欧几里得算法的原理是 GCD递归定理算法
GCD递归定理:.net
对任意 非负整数 a 和 任意 整数 b,
gcd(a,b) = gcd(b, a mod b)
code
为了证实这个定理,咱们首先须要知道一下几个有关 gcd
的基本知识跟相关等式跟推论blog
公约数递归
定义:若是 d|a
(d 整除 a)且 d|b
,那么 d 是 a 与 b 的 公约数。ip
性质:若是 d|a
且 d|b
,那么 d|(ax + by); x,y ∈ Z(任意整数)
get
最大公约数博客
定义:两个非零整数 a 和 b 的公约数里最大的就是 最大公约数。it
a|b 且 b|a
那么 a = ±b
d|a 且 d|b
那么 d|(ax + by); x,y ∈ Z
a mod n = a - n⌊a/n⌋(向下整除); a∈Z,n∈N*(正整数)
d|a 且 d|b
则 d|gcd(a, b)
若是咱们想要得到结论gcd(a,b) = gcd(b, a mod b)
class
那么咱们只须要证实gcd(a,b)|gcd(b, a mod b) 且 gcd(b,a mod b)|gcd(a,b)
就能够利用等式 1来证实他俩相等了。
gcd(a,b)|gcd(b,a mod b)
设
d = gcd(a, b)
∴
d|a 且 d|b
∵ 由 等式 3 可知:
(a mod b) = a - qb
q = ⌊a/b⌋
∴
a mod b
是 a 与 b 的线性组合∴ 由 等式 2 可知 :
d|(a mod b)
∵
d|b 且 d|(a mod b)
∴ 由 推论 1 可知
d|gcd(b, a mod b)
等价结论:
gcd(a, b)|gcd(b, a mod b)
gcd(b,a mod b)|gcd(a,b)
设
c = gcd(b, a mod b)
∴
c|b 且 c|(a mod b)
∵
a = qb + r
r = a mod b
q = ⌊a/b⌋
∴ a 是 b 和 (a mod b) 的线性组合
∴ 由 等式 2 可知:
c|a
∵
c|a 且 c|b
∴ 由 推论 1 可知:
c|gcd(a, b)
等价结论:
gcd(b, a mod b)|gcd(a, b)
s
gcd(a,b) = gcd(b, a mod b)
由 上述两个结论 可知:
gcd(a, b)|gcd(b, a mod b)
gcd(b, a mod b)|gcd(a, b)
∴ 由 等式 1 可知:
gcd(a, b) = gcd(b, a mod b)
到这里 GCD递归定理 就证实结束了
在这里我放上几个经常使用的获取 两个数字GCD的代码:
递归:
// 通常形式 int gcd(int a, int b) { if(b == 0) return a; return gcd(b, a % b); }
// 简化形式 int gcd(int a, int b) { return (b==0) ? a : gcd(b, a % b); }
非递归:
int gcd(int a, int b) { int tmp; while(b != 0) { tmp = b; b = a % b; a = tmp; } return a; }
位运算:
// 通常形式 int gcd(int a, int b) { while(b) { a %= b; // 下面三行是交换 a 跟 b 的值 b ^= a; a ^= b; b ^= a; } return a; }
// 简化版 int gcd(int a,int b) { while(b^=a^=b^=a%=b); return a; }
《算法导论 (第三版)》 -- 第31章 数论算法