『计算机视觉』Mask-RCNN_训练网络其三:训练Model

Github地址:Mask_RCNN
『计算机视觉』Mask-RCNN_论文学习
『计算机视觉』Mask-RCNN_项目文档翻译
『计算机视觉』Mask-RCNN_推断网络其一:总览
『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络
『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成
『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合
『计算机视觉』Mask-RCNN_推断网络其五:目标检测结果精炼
『计算机视觉』Mask-RCNN_推断网络其六:Mask生成
『计算机视觉』Mask-RCNN_推断网络终篇:使用detect方法进行推断
『计算机视觉』Mask-RCNN_锚框生成
『计算机视觉』Mask-RCNN_训练网络其一:数据集与Dataset类
『计算机视觉』Mask-RCNN_训练网络其二:train网络结构&损失函数
『计算机视觉』Mask-RCNN_训练网络其三:训练Modelhtml

1、模型初始化

一、建立模型并载入预训练参数

准备了数据集后,咱们开始构建model,training网络结构上一节已经介绍完了,如今咱们看一看训练时如何调用training结构的网络。python

如上所示,咱们首先创建图结构(详见上节『计算机视觉』Mask-RCNN_训练网络其二:train网络结构),而后选择初始化参数方案git

例子(train_shape.ipynb)中使用的是COCO预训练模型,若是想要"Finds the last checkpoint file of the last trained model in the
model directory
",那么选择"last"选项。github

载入参数方法以下,注意几个以前接触很少的操做,正则表达式

  1. 载入h5文件使用模块为h5py
  2. keras model有属性.layers以list形式返回所有的层对象
  3. keras.engine下的saving模块load_weights_from_hdf5_group_by_name按照名字对应,而load_weights_from_hdf5_group按照记录顺序对应express

    def load_weights(self, filepath, by_name=False, exclude=None):
        """Modified version of the corresponding Keras function with
        the addition of multi-GPU support and the ability to exclude
        some layers from loading.
        exclude: list of layer names to exclude
        """
        import h5py
        # Conditional import to support versions of Keras before 2.2
        # TODO: remove in about 6 months (end of 2018)
        try:
            from keras.engine import saving
        except ImportError:
            # Keras before 2.2 used the 'topology' namespace.
            from keras.engine import topology as saving

        if exclude:
            by_name = True

        if h5py is None:
            raise ImportError('`load_weights` requires h5py.')
        f = h5py.File(filepath, mode='r')
        if 'layer_names' not in f.attrs and 'model_weights' in f:
            f = f['model_weights']

        # In multi-GPU training, we wrap the model. Get layers
        # of the inner model because they have the weights.
        keras_model = self.keras_model
        layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\
            else keras_model.layers

        # Exclude some layers
        if exclude:
            layers = filter(lambda l: l.name not in exclude, layers)

        if by_name:
            saving.load_weights_from_hdf5_group_by_name(f, layers)
        else:
            saving.load_weights_from_hdf5_group(f, layers)
        if hasattr(f, 'close'):
            f.close()

        # Update the log directory
        self.set_log_dir(filepath)

二、从h5文件一窥load模式

keras model的层

对于layer对象咱们有一下几点说明网络

layer.name:查询层对象的节点名称app

layer.trainable:层对象是否可训练dom

对于TimeDistributed对象,其.layer方法返回对象才是咱们要设定的层对象ide

载入模型并查看layers以下,

查看名称以下,名称即咱们在build函数中为每一个层设置的名称,和TensorFlow同样,参数载入依赖于此。

 

h5 文件记录

载入h5文件并查看,f.attrs记录了三个值,第一个为字符串list,后两个均为字符串,对于"layer_names"咱们以下尝试,其记录了各个层的name字符串(h5记录的都是二进制形式,须要转码)

在keras.engine的saving方法中,能够看到后两个记录的解析,实际测试一个是keras的版本号,一个会返回b'tensorflow'

        if 'keras_version' in f.attrs:
        original_keras_version = f.attrs['keras_version'].decode('utf8')
    else:
        original_keras_version = '1'
    if 'backend' in f.attrs:
        original_backend = f.attrs['backend'].decode('utf8')
    else:
        original_backend = None

 "layer_names"记录的字符串们能够视为h5文件索引,其索引对象为子h5对象,子h5对象有attrs:"weight_names",也是字符串list,能够索引子h5对象,其索引出的即是参数值,示意以下:

实际的载入参数时,keras API已经封装的很好了,不须要咱们本身取对应h5中的名称和网络中的名称,而后更新参数值。交由saving.load_weights_from_hdf5_group_by_name(f, layers),输入f句柄,输入须要载入参数的层对象便可对应名字完成载入

 2、模型训练

本部不讲解网络结构,主要介绍的是训练步骤,网络结构介绍见:『计算机视觉』Mask-RCNN_训练网络其二:train网络结构

模型训练有两种模式,

  1. Only the heads. Here we're freezing all the backbone layers and training only the randomly initialized layers (i.e. the ones that we didn't use pre-trained weights from MS COCO). To train only the head layers, pass layers='heads' to the train() function.

  2. Fine-tune all layers. For this simple example it's not necessary, but we're including it to show the process. Simply pass layers="all to train all layers.

一、train方法文档

train方法声明以下

def train(self, train_dataset, val_dataset, learning_rate, epochs, layers,
              augmentation=None, custom_callbacks=None, no_augmentation_sources=None)

文档说明以下

"""Train the model.
train_dataset, val_dataset: Training and validation Dataset objects.
learning_rate: The learning rate to train with
epochs: Number of training epochs. Note that previous training epochs
are considered to be done alreay, so this actually determines
the epochs to train in total rather than in this particaular
call.
layers: Allows selecting which layers to train. It can be:
- A regular expression to match layer names to train
- One of these predefined values:
heads: The RPN, classifier and mask heads of the network
all: All the layers
3+: Train Resnet stage 3 and up
4+: Train Resnet stage 4 and up
5+: Train Resnet stage 5 and up
augmentation: Optional. An imgaug (https://github.com/aleju/imgaug)
augmentation. For example, passing imgaug.augmenters.Fliplr(0.5)
flips images right/left 50% of the time. You can pass complex
augmentations as well. This augmentation applies 50% of the
time, and when it does it flips images right/left half the time
and adds a Gaussian blur with a random sigma in range 0 to 5.

augmentation = imgaug.augmenters.Sometimes(0.5, [
imgaug.augmenters.Fliplr(0.5),
imgaug.augmenters.GaussianBlur(sigma=(0.0, 5.0))
])
custom_callbacks: Optional. Add custom callbacks to be called
with the keras fit_generator method. Must be list of type keras.callbacks.
no_augmentation_sources: Optional. List of sources to exclude for
augmentation. A source is string that identifies a dataset and is
defined in the Dataset class.
"""

二、模型准备&数据准备

首先对模型设置进行准备。

  • 指定训练层时既能够输入层名层,也能够输入预约的字符串,输入预约字符串则其解析规则见下面开头几行。最终获取layers变量记录要训练层的名字(或者正则表达式)
  • 而后准备数据,data_generator函数涉及预处理流程很繁琐(见model.py),能够自行查阅
  • 生成文件保存目录
        assert self.mode == "training", "Create model in training mode."

        # Pre-defined layer regular expressions
        layer_regex = {
            # all layers but the backbone
            "heads": r"(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
            # From a specific Resnet stage and up
            "3+": r"(res3.*)|(bn3.*)|(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
            "4+": r"(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
            "5+": r"(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
            # All layers
            "all": ".*",
        }
        if layers in layer_regex.keys():
            layers = layer_regex[layers]

        # Data generators
        train_generator = data_generator(train_dataset, self.config, shuffle=True,
                                         augmentation=augmentation,
                                         batch_size=self.config.BATCH_SIZE,
                                         no_augmentation_sources=no_augmentation_sources)
        val_generator = data_generator(val_dataset, self.config, shuffle=True,
                                       batch_size=self.config.BATCH_SIZE)

        # Create log_dir if it does not exist
        if not os.path.exists(self.log_dir):
            os.makedirs(self.log_dir)

三、model处理

这里主要的步骤就是

  • 将前一步的可训练层名称传入函数self.set_trainable(layers),设置对应层对象的trainable属性为True
  • self.compile方法设定优化器,综合各个loss给出总体优化对象,最后编译model
        # Callbacks
        callbacks = [
            keras.callbacks.TensorBoard(log_dir=self.log_dir,
                                        histogram_freq=0, write_graph=True, write_images=False),
            keras.callbacks.ModelCheckpoint(self.checkpoint_path,
                                            verbose=0, save_weights_only=True),
        ]

        # Add custom callbacks to the list
        if custom_callbacks:
            callbacks += custom_callbacks

        # Train
        log("\nStarting at epoch {}. LR={}\n".format(self.epoch, learning_rate))
        log("Checkpoint Path: {}".format(self.checkpoint_path))
        self.set_trainable(layers)
        self.compile(learning_rate, self.config.LEARNING_MOMENTUM)

        # Work-around for Windows: Keras fails on Windows when using
        # multiprocessing workers. See discussion here:
        # https://github.com/matterport/Mask_RCNN/issues/13#issuecomment-353124009
        if os.name is 'nt':
            workers = 0
        else:
            workers = multiprocessing.cpu_count()  # 单机默认为0

self.compile方法

    def compile(self, learning_rate, momentum):
        """Gets the model ready for training. Adds losses, regularization, and
        metrics. Then calls the Keras compile() function.
        """
        # Optimizer object
        optimizer = keras.optimizers.SGD(
            lr=learning_rate, momentum=momentum,
            clipnorm=self.config.GRADIENT_CLIP_NORM)
        # Add Losses
        # First, clear previously set losses to avoid duplication
        self.keras_model._losses = []
        self.keras_model._per_input_losses = {}
        loss_names = [
            "rpn_class_loss",  "rpn_bbox_loss",
            "mrcnn_class_loss", "mrcnn_bbox_loss", "mrcnn_mask_loss"]
        for name in loss_names:
            layer = self.keras_model.get_layer(name)
            if layer.output in self.keras_model.losses:
                continue
            loss = (
                tf.reduce_mean(layer.output, keep_dims=True)
                * self.config.LOSS_WEIGHTS.get(name, 1.))
            self.keras_model.add_loss(loss)

        # Add L2 Regularization
        # Skip gamma and beta weights of batch normalization layers.
        reg_losses = [
            keras.regularizers.l2(self.config.WEIGHT_DECAY)(w) / tf.cast(tf.size(w), tf.float32)
            for w in self.keras_model.trainable_weights
            if 'gamma' not in w.name and 'beta' not in w.name]
        self.keras_model.add_loss(tf.add_n(reg_losses))

        # Compile
        self.keras_model.compile(
            optimizer=optimizer,
            loss=[None] * len(self.keras_model.outputs))

        # Add metrics for losses
        for name in loss_names:
            if name in self.keras_model.metrics_names:
                continue
            layer = self.keras_model.get_layer(name)
            self.keras_model.metrics_names.append(name)
            loss = (
                tf.reduce_mean(layer.output, keepdims=True)
                * self.config.LOSS_WEIGHTS.get(name, 1.))
            self.keras_model.metrics_tensors.append(loss)

self.set_trainable方法

    def set_trainable(self, layer_regex, keras_model=None, indent=0, verbose=1):
        """Sets model layers as trainable if their names match
        the given regular expression.
        """
        # Print message on the first call (but not on recursive calls)
        if verbose > 0 and keras_model is None:
            log("Selecting layers to train")

        keras_model = keras_model or self.keras_model

        # In multi-GPU training, we wrap the model. Get layers
        # of the inner model because they have the weights.
        layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\
            else keras_model.layers

        for layer in layers:
            # Is the layer a model?
            if layer.__class__.__name__ == 'Model':  # 不一样层隶属不一样的class,但Model class是单一的
                print("In model: ", layer.name)
                self.set_trainable(
                    layer_regex, keras_model=layer, indent=indent + 4)
                continue

            if not layer.weights:
                continue
            # Is it trainable?
            trainable = bool(re.fullmatch(layer_regex, layer.name))
            # Update layer. If layer is a container, update inner layer.
            if layer.__class__.__name__ == 'TimeDistributed':
                layer.layer.trainable = trainable
            else:
                layer.trainable = trainable
            # Print trainable layer names
            if trainable and verbose > 0:
                log("{}{:20}   ({})".format(" " * indent, layer.name,
                                            layer.__class__.__name__))

 

四、训练model

最简单的一步了,调用keras接口训练便可,上一步定义的callbacks也是在这里传入

        self.keras_model.fit_generator(
            train_generator,
            initial_epoch=self.epoch,
            epochs=epochs,
            steps_per_epoch=self.config.STEPS_PER_EPOCH,
            callbacks=callbacks,
            validation_data=val_generator,
            validation_steps=self.config.VALIDATION_STEPS,
            max_queue_size=100,
            workers=workers,
            use_multiprocessing=True,
        )
        self.epoch = max(self.epoch, epochs)

至此,train方法便自动的开始了模型的训练工做。

相关文章
相关标签/搜索