2017年深度学习在NLP领域的进展和趋势

本文翻译的是这篇文章 在过去的很多年里,深度学习架构和算法在某些领域,比如图像识别和语音处理,取得了令人印象深刻的进展。 最初,深度学习架构和算法在NLP领域并没能取得大的进展,但是最近深度学习在普通NLP任务上的取得的结果显示深度学习也能取得显著的效果。命名实体识别、词性标注和情感分析就即是神经网络模型优于传统方法的地方。而机器翻译是所有进展中是最值得纪念的。 从自己训练word2vec到使用预
相关文章
相关标签/搜索