题目连接php
想不到想不到。。c++
首先在不考虑每一个人的真是成绩的状况下,设\(f[i][j]\)表示考虑了前\(i\)我的,有\(j\)我的被碾压的方案数spa
转移方程:\[f[i][j] = \sum_{k = j}^n f[i -1][k] C_{k}^{k - j} C_{N - k}^{r[i] - 1 - (k - j)} * g(i)\]code
大概解释一下,枚举的\(k\)表示以前碾压了多少,首先咱们凑出\(j\)我的继续碾压,也就是说会有\(k - j\)我的该课的分数比\(B\)爷高,那么这\(k\)我的咱们已经考虑完了get
接下来须要从剩下的\(N-k\)我的中,选出\(r[i] - 1 - (k - j)\)我的,保证他们的分数比B爷高it
后面的\(g(i)\)表示的是吧\(1 \sim U_i\)的分数,分给\(N\)我的后,有\(R_i\)我的比B爷高的方案数class
这个计算的时候能够直接枚举B爷的分数im
\(g(k) = \sum_{i = 1}^{U_k} i^{N - R[i]} * (U_k - i) ^{R[i] - 1}\)di
后面的次数小于等于\(N-1\),而后直接插值一下就好了while
// luogu-judger-enable-o2 #include<bits/stdc++.h> using namespace std; const int MAXN = 103, mod = 1e9 + 7; inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int add(int x, int y) { if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y; } int mul(int x, int y) { return 1ll * x * y % mod; } int fp(int a, int p) { int base = 1; while(p) { if(p & 1) base = mul(base, a); a = mul(a, a); p >>= 1; } return base; } int N, M, K, f[MAXN][MAXN], C[MAXN][MAXN], U[MAXN], R[MAXN], g[MAXN]; int get(int U, int R) { memset(g, 0, sizeof(g)); for(int i = 1; i <= MAXN - 1; i++) for(int k = 1; k <= i; k++) g[i] = add(g[i], mul(fp(k, N - R), fp(i - k, R - 1))); int ans = 0; for(int i = 1; i <= MAXN - 1; i++) { int up = 1, down = 1; for(int j = 1; j <= MAXN - 1; j++) { if(i == j) continue; up = mul(up, add(U, -j)); down = mul(down, add(i, -j)); } ans = add(ans, mul(g[i], mul(up, fp(down, mod - 2)))); } return ans; } int main() { //freopen("a.in", "r", stdin); N = read(); M = read(); K = read(); for(int i = 0; i <= N; i++) { C[i][0] = C[i][i] = 1; for(int j = 1; j < i; j++) C[i][j] = add(C[i - 1][j - 1], C[i - 1][j]); } for(int i = 1; i <= M; i++) U[i] = read(); for(int i = 1; i <= M; i++) R[i] = read(); f[0][N - 1] = 1; for(int i = 1; i <= M; i++) { int t = get(U[i], R[i]); for(int j = K; j <= N; j++) { for(int k = j; k <= N - 1; k++) if(k - j <= R[i] - 1) f[i][j] = add(f[i][j], mul(mul(f[i - 1][k], C[k][k - j]), C[N - 1 - k][R[i] - 1 - (k - j)])); f[i][j] = mul(f[i][j], t); } } printf("%d", f[M][K]); return 0; } /* 100 3 50 500 500 456 13 46 45 */