Linux socket 编程中存在的五个隐患

前言:
        Socket API 是网络应用程序开发中实际应用的标准 API。尽管该 API 简单,可是 
 
开发新手可能会经历一些常见的问题。本文识别一些最多见的隐患并向您显示如何避免它们。 相关文档:《 linux socket 编程》 在 4.2 BSD UNIX® 操做系统中首次引入,Sockets API 如今是任何操做系统的标准特性。事实上,很难找到一种不支持 Sockets API 的现代语言。该 API 至关简单,但新的开发人员仍然会遇到一些常见的隐患。
  本文识别那些隐患并向您显示如何避开它们。
隐患 1.忽略返回状态
第一个隐患很明显,但它是开发新手最容易犯的一个错误。若是您忽略函数的返回状态,当它们失败或部分红功的时候,您也许会迷失。反过来,这可能传播错误,使定位问题的源头变得困难。
捕获并检查每个返回状态,而不是忽略它们。考虑清单 1 显示的例子,一个套接字 send 函数。
清单 1. 忽略 API 函数返回状态
int status, sock, mode;
 
/* Create a new stream (TCP) socket */
sock = socket( AF_INET, SOCK_STREAM, 0 );
...status = send( sock, buffer, buflen, MSG_DONTWAIT );
if (status == -1)
{ /* send failed */ 
printf( "send failed: %s/n",?
 strerror(errno) );
}
else
{ /* send succeeded -- or did it? */}           
 
  清单 1 探究一个函数片段,它完成套接字 send 操做(经过套接字发送数据)。函数的错误状态被捕获并测试,但这个例子忽略了 send 在无阻塞模式(由 MSG_DONTWAIT 标志启用)下的一个特性。
  send API 函数有三类可能的返回值:
  • 若是数据成功地排到传输队列,则返回 0。
  • 若是排队失败,则返回 -1(经过使用 errno 变量能够了解失败的缘由)。
  • 若是不是全部的字符都可以在函数调用时排队,则最终的返回值是发送的字符数。
  因为 send 的 MSG_DONTWAIT 变量的无阻塞性质,函数调用在发送完全部的数据、一些数据或没有发送任何数据后返回。在这里忽略返回状态将致使不彻底的发送和随后的数据丢失。
 
隐患 2.对等套接字闭包
UNIX 有趣的一面是您几乎能够把任何东西当作是一个文件。文件自己、目录、管道、设备和套接字都被看成文件。这是新颖的抽象,意味着一整套的 API 能够用在普遍的设备类型上。
考虑 read API 函数,它从文件读取必定数量的字节。read 函数返回读取的字节数(最高为您指定的最大值);或者 -1,表示错误;或者 0,若是已经到达文件末尾。
若是在一个套接字上完成一个 read 操做并获得一个为 0 的返回值,这代表远程套接字端的对等层调用了 close API 方法。该指示与文件读取相同 —— 没有多余的数据能够经过描述符读取(参见 清单 2)。
清单 2.适当处理 read API 函数的返回值
int sock, status;
sock = socket( AF_INET, SOCK_STREAM, 0 );
...status = read( sock, buffer, buflen );
if (status > 0)
{ /* Data read from the socket */}
else if (status == -1)
/* Error, check errno, take action... */
}
else if (status == 0)
/* Peer closed the socket, finish the close */ 
close( sock );
/* Further processing... */
}
  一样,能够用 write API 函数来探测对等套接字的闭包。在这种状况下,接收 SIGPIPE 信号,或若是该信号阻塞,write 函数将返回 -1 并设置 errno 为 EPIPE。
 
隐患 3.地址使用错误(EADDRINUSE)
  您可使用 bind API 函数来绑定一个地址(一个接口和一个端口)到一个套接字端点。能够在服务器设置中使用这个函数,以便限制可能有链接到来的接口。也能够在客户端设置中使用这个函数,以便限制应当供出去的链接所使用的接口。bind 最多见的用法是关联端口号和服务器,并使用通配符地址(INADDR_ANY),它容许任何接口为到来的链接所使用。
  bind 广泛遭遇的问题是试图绑定一个已经在使用的端口。该陷阱是也许没有活动的套接字存在,但仍然禁止绑定端口(bind 返回 EADDRINUSE),它由 TCP 套接字状态 TIME_WAIT 引发。该状态在套接字关闭后约保留 2 到 4 分钟。在 TIME_WAIT 状态退出以后,套接字被删除,该地址才能被从新绑定而不出问题。
等待 TIME_WAIT 结束多是使人恼火的一件事,特别是若是您正在开发一个套接字服务器,就须要中止服务器来作一些改动,而后重启。幸运的是,有方法能够避开 TIME_WAIT 状态。能够给套接字应用 SO_REUSEADDR 套接字选项,以便端口能够立刻重用。
考虑清单 3 的例子。在绑定地址以前,我以 SO_REUSEADDR 选项调用 setsockopt。为了容许地址重用,我设置整型参数(on)为 1 (否则,能够设为 0 来禁止地址重用)。
清单 3.使用 SO_REUSEADDR 套接字选项避免地址使用错误
int sock, ret, on;struct sockaddr_in servaddr;
/* Create a new stream (TCP) socket */
sock = socket( AF_INET, SOCK_STREAM, 0 ):
/* Enable address reuse */
on = 1;
ret = setsockopt( sock, SOL_SOCKET, SO_REUSEADDR,
 &on, sizeof(on) );
/* Allow connections to port 8080 from any available interface
*/
memset( &servaddr, 0, sizeof(servaddr) );
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl( INADDR_ANY );
servaddr.sin_port = htons( 45000 );
/* Bind to the address (interface/port) */
ret = bind( sock, (struct sockaddr *)&servaddr, sizeof(servaddr) );     
在应用了 SO_REUSEADDR 选项以后,bind API 函数将容许地址的当即重用。
 
隐患 4.发送结构化数据
套接字是发送无结构二进制字节流或 ASCII 数据流(好比 HTTP 上的 HTTP 页面,或 SMTP 上的电子邮件)的完美工具。可是若是试图在一个套接字上发送二进制数据,事情将会变得更加复杂。
  好比说,您想要发送一个整数:您能够确定,接收者将使用一样的方式来解释该整数吗?运行在同一架构上的应用程序能够依赖它们共同的平台来对该类型的数据作出相同的解释。可是,若是一个运行在高位优先的 IBM PowerPC 上的客户端发送一个 32 位的整数到一个低位优先的 Intel x86,那将会发生什么呢?字节排列将引发不正确的解释。
  经过套接字发送一个 C 结构会怎么样呢?这里,也会遇到麻烦,由于不是全部的编译器都以相同的方式排列一个结构的元素。结构也可能被压缩以便使浪费的空间最少,这进一步使结构中的元素错位。
  幸亏,有解决这个问题的方案,可以保证两端数据的一致解释。过去,远程过程调用(Remote Procedure Call,RPC)套装工具提供所谓的外部数据表示(External Data Representation,XDR)。XDR 为数据定义一个标准的表示来支持异构网络应用程序通讯的开发。
如今,有两个新的协议提供类似的功能。可扩展标记语言/远程过程调用(XML/RPC)以 XML 格式安排 HTTP 上的过程调用。数据和元数据用 XML 进行编码并做为字符串传输,并经过主机架构把值和它们的物理表示分开。SOAP 跟随 XML-RPC,以更好的特性和功能扩展了它的思想。参见 参考资料小节,获取更多关于每一个协议的信息。
 
隐患 5.TCP 中的帧同步假定
TCP 不提供帧同步,这使得它对于面向字节流的协议是完美的。这是 TCP 与 UDP(User Datagram Protocol,用户数据报协议)的一个重要区别。UDP 是面向消息的协议,它保留发送者和接收者之间的消息边界。TCP 是一个面向流的协议,它假定正在通讯的数据是无结构的,如图 1 所示。


图 1.UDP 的帧同步能力和缺少帧同步的 TCP
linux

.UDP 的帧同步能力和缺少帧同步的 TCP
  图 1 的上部说明一个 UDP 客户端和服务器。左边的对等层完成两个套接字的写操做,每一个 100 字节。协议栈的 UDP 层追踪写的数量,并确保当右边的接收者经过套接字获取数据时,它以一样数量的字节到达。换句话说,为读者保留了写者提供的消息边界。
如今,看图 1 的底部.它为 TCP 层演示了相同粒度的写操做。两个独立的写操做(每一个 100 字节)写入流套接字。但在本例中,流套接字的读者获得的是 200 字节。协议栈的 TCP 层聚合了两次写操做。这种聚合能够发生在 TCP/IP 协议栈的发送者或接收者中任何一方。重要的是,要注意到聚合也许不会发生 —— TCP 只保证数据的有序发送。
  对大多数开发人员来讲,该陷阱会引发困惑。您想要得到 TCP 的可靠性和 UDP 的帧同步。除非改用其余的传输协议,好比流传输控制协议(STCP),不然就要求应用层开发人员来实现缓冲和分段功能。
  调试套接字应用程序的工具
  GNU/Linux 提供几个工具,它们能够帮助您发现套接字应用程序中的一些问题。此外,使用这些工具还有教育意义,并且可以帮助解释应用程序和 TCP/IP 协议栈的行为。在这里,您将看到对几个工具的概述。查阅下面的 参考资料 了解更多的信息。
  查看网络子系统的细节
  netstat 工具提供查看 GNU/Linux 网络子系统的能力。使用 netstat,能够查看当前活动的链接(按单个协议进行查看),查看特定状态的链接(好比处于监听状态的服务器套接字)和许多其余的信息。清单 4 显示了 netstat 提供的一些选项和它们启用的特性。

清单 4.netstat 实用程序的用法模式
View all TCP sockets currently active$ netstat
 --tcpView all UDP sockets$ netstat
 --udpView all TCP sockets in the listening state$ netstat
 --listeningView the multicast group membership information$ netstat
--groupsDisplay the list of masqueraded connections$ netstat
--masqueradeView statistics for each protocol$ netstat
 --statistics
 
  尽管存在许多其余的实用程序,但 netstat 的功能很全面,它覆盖了 route、ifconfig 和其余标准 GNU/Linux 工具的功能。
  监视流量
  可使用 GNU/Linux 的几个工具来检查网络上的低层流量。tcpdump 工具是一个比较老的工具,它从网上“嗅探”网络数据包,打印到 stdout 或记录在一个文件中。该功能容许查看应用程序产生的流量和 TCP 生成的低层流控制机制。一个叫作 tcpflow 的新工具与 tcpdump 相辅相成,它提供协议流分析和适当地重构数据流的方法,而无论数据包的顺序或重发。清单 5 显示 tcpdump 的两个用法模式。

  清单 5.tcpdump 工具的用法模式
Display all traffic on the eth0 interface for
the local host$ tcpdump -l -i eth0Show all traffic
on the network coming from or going
to host plato$ tcpdump host platoShow all HTTP traffic
for host camus$ tcpdump host camus and (port http)View
traffic coming from or going
to TCP port 45000 on the local host$ tcpdump tcp port 45000
tcpdump 和 tcpflow 工具备大量的选项,包括建立复杂过滤表达式的能力。查阅下面的参考资料 获取更多关于这些工具的信息。
tcpdump 和 tcpflow 都是基于文本的命令行工具。若是您更喜欢图形用户界面(GUI),有一个开放源码工具 Ethereal 也许适合您的须要。Ethereal 是一个专业的协议分析软件,它能够帮助调试应用层协议。它的插入式架构(plug-in architecture)能够分解协议,好比 HTTP 和您能想到的任何协议(写本文的时候共有 637 个协议)。
https://blog.csdn.net/hairetz/article/details/4223234
相关文章
相关标签/搜索