Python3多重继承排序原理(C3算法)

  参考:https://www.jianshu.com/p/c9a0b055947bpython

     https://xubiubiu.com/2019/06/10/python-%E6%96%B9%E6%B3%95%E8%A7%A3%E6%9E%90%E9%A1%BA%E5%BA%8Fmro-c3%E7%AE%97%E6%B3%95/算法

  

  类C的线性化记忆为L[C]=[C1,C2,...Cn],其中C1称为L[C]的头,其他元素[C2,...Cn]称为尾。若是一个类C继承自基类B1,B2,...,B那么L[C]的计算过程为blog

  

#类object为最高父类,全部类都继承object
L[objicet]=[object]
L[C(B1,B2,...Bn)]=[C]+merge(L[B1],L[B2],[B1,B2,...Bn])

  merge是将一组列表输出为一个列表,其过程为排序

1,检查第一个列表的头元素,记作H
2,若是H是后续序列的第一个元素,或者不在后续序列中再次出现,则将其输出,并将其从全部列表中删除,若是不符合跳过此元素,查找下一个列表的第一个元素,而后回到步骤1
3,重复上述步骤,直至列表为空或者不能再找出能够输出的元素。

  举例说明继承

>>> class A(object):
...  pass
... 
>>> class B(object):
...  pass
... 
>>> class C(A,B):
...   pass

 

  首先object,A,B的线性化结果比较简单get

L[object]=[object]
L[A]=[A,object]
L[B]=[B,object]

  python内置变量__mro__存储了class

>>> object.__mro__
(<class 'object'>,)
>>> A.__mro__
(<class '__main__.A'>, <class 'object'>)
>>> B.__mro__
(<class '__main__.B'>, <class 'object'>)

  须要计算出L[C]变量

L[C]=[C]+merge(L[A],L[B],[A,B])
    =[C]+mergr([A,object],[B,object],[A,B])
	#取得的第一个元素是A,是序列[A,B]的第一个元素因此输出A而且将A从全部列表中删除
	=[C,A]+merge([object],[B,object],[B])
	#取得的元素为object不知足条件,object是序列[B,object]的最后一个元素,跳过取到元素为B,知足条件,将B输出并从全部列表删除B
	=[C,A,B]+merge([object],[object])
	#最后的结果
	=[C,A,B,object]

  使用__mro__验证计算结果正确cli

>>> C.__mro__
(<class '__main__.C'>, <class '__main__.A'>, <class '__main__.B'>, <class 'object'>)

  一个复杂的例子object

class B(object): pass

class C(object): pass

class D(A,C): pass

class E(B,C): pass

class F(D,E): pass

  计算过程

L[F] = [F] + merge(L[D], L[E], [D, E])
     = [F] + merge([D, A, C, object], [E, B, C, object],  [D, E])
     = [F, D] + merge([A, C, object], [E, B, C, object],  [E])
     = [F, D, A] + merge([C, object], [E, B, C, object], [E])
     = [F, D, A, E] + merge([C, object], [B, C, object])
     = [F, D, A, E, B] + merge([C, object], [C, object])
     = [F, D, A, E, B, C, object]

  验证计算结果

(<class '__main__.F'>, <class '__main__.D'>, <class '__main__.A'>, <class '__main__.E'>, <class '__main__.B'>, <class '__main__.C'>, <class 'object'>)

  

  以上算法虽然能够计算出继承顺序,可是不直观 ,能够使用图示拓扑顺序进行推导

  什么是拓扑顺序

  在图论中,拓扑顺序(Topological Storting)是一个有向无环图(DAG,Directed Acyclic Graph)的全部定点的线性序列。且该序列必须知足一下两个条件

  1,每一个顶点出现且只出现一次

        2,若存在一条从顶点A到顶点B的路径,那么在序列中顶点A出如今顶点B的前面

  看下图

 

   它是一个DAG图,那么若是写出它的拓扑顺序呢?一种比较常见的方法

  1,从DAG途中选择一个没有前驱(即入度为0)的顶点并输出

        2,从图中删除该顶点和全部以它为起点的有向边

        3,重复1和2直到当前DAG图为空或者当前途中不存在无前驱的顶点为止。

  因而获得拓扑排序后的结果为{1,2,4,3,5}

  看实例

class A(object):
  pass

class B(object):
  pass

class C1(A,B):
  pass

class C2(A,B):
  pass

class D(C1,C2):
  pass

  根据上述继承关系构成一张图

  1,找到入度为0的点,只有一个D,把D拿出来,把D相关的边减掉

   2,如今有两个入度为0的点(C1,C2),取最左原则,拿C1,减掉C1相关的边,这时候的排序是{D,C1}

        3, 如今入度为0的点(C2),拿掉C2,减掉C2相关的边,这时候的排序是{D,C1,C2}

   4,如今入度为0的点(A,B),取最左原则,拿掉A,减掉A相关的边,这时候的排序是{D,C1,C2,A}

        5,如今入度为0的点只有B,拿掉B,减掉B相关的边,最后只剩下object

        因此最后的排序是{D,C1,C2,A,B,object}

       验证一下结果

>>> D.__mro__
(<class '__main__.D'>, <class '__main__.C1'>, <class '__main__.C2'>, <class '__main__.A'>, <class '__main__.B'>, <class 'object'>)

  

  为了进一步属性,在看一个例子

class A(object):
  pass

class B(object):
  pass

class C1(A):
  pass

class C2(B):
  pass

class D(C1,C2):
  pass

  继承图

 

 

  1,找到入度为0的顶点,只有一个D,拿D,剪掉D相关的边

  2,获得两个入度为0的顶点(C1,C2),根据最左原则,拿C1,剪掉C1相关的边,这时候序列为{D,C1}

  3,接着看,入度为0的顶点有两个(A,C1),根据最左原则,拿A,剪掉A相关的边,这时候序列为{D,C1,A}

  4,接着看,入度为0的顶点为C2,拿C2,剪掉C2相关的边,这时候序列为{D,C1,A,C2}

  5,继续,入度为0的顶点为B,拿B,剪掉B相关的边,最后还有一个object

  因此最后的序列为{D,C1,A,C2,B,object}

(<class '__main__.D'>, <class '__main__.C1'>, <class '__main__.A'>, <class '__main__.C2'>, <class '__main__.B'>, <class 'object'>)

  使用图示拓扑法能够快速计算出继承顺序

相关文章
相关标签/搜索