在讲解Breadth-first search 算法以前,咱们先简单介绍两种数据类型Graph
和Queue
。node
这就是一个图,它由两部分组成:git
这种数据结构能够形象的表示一个网络
,而在实际解决问题的时候,咱们除了找到相似网络
的模拟外,还须要考虑下边两点:github
而如何实现这个查找的过程就用到了算法。算法
在项目管理专业的工程方法中,存在一个有向链接图方法,根据这个图咱们就能够划出邻接矩阵,而后再求出可达矩阵,缩减矩阵等等,说这些内容,是想表达在用代码模拟图的时候,可使用矩阵的方式来描述,但本篇中采用的是另外一种方式,咱们使用数组保存某个节点的neighbor节点。swift
上边一段话会在下边的代码中进行展现:数组
Graph.swift // MARK: - Edge public class Edge: Equatable { public var neighbor: Node public init(neighbor: Node) { self.neighbor = neighbor } } public func == (lhs: Edge, rhs: Edge) -> Bool { return lhs.neighbor == rhs.neighbor } // MARK: - Node public class Node: CustomStringConvertible, Equatable { public var neighbors: [Edge] public private(set) var label: String public var distance: Int? public var visited: Bool public init(label: String) { self.label = label neighbors = [] visited = false } public var description: String { if let distance = distance { return "Node(label: \(label), distance: \(distance))" } return "Node(label: \(label), distance: infinity)" } public var hasDistance: Bool { return distance != nil } public func remove(edge: Edge) { neighbors.remove(at: neighbors.index { $0 === edge }!) } } public func == (lhs: Node, rhs: Node) -> Bool { return lhs.label == rhs.label && lhs.neighbors == rhs.neighbors } // MARK: - Graph public class Graph: CustomStringConvertible, Equatable { public private(set) var nodes: [Node] public init() { self.nodes = [] } public func addNode(_ label: String) -> Node { let node = Node(label: label) nodes.append(node) return node } public func addEdge(_ source: Node, neighbor: Node) { let edge = Edge(neighbor: neighbor) source.neighbors.append(edge) } public var description: String { var description = "" for node in nodes { if !node.neighbors.isEmpty { description += "[node: \(node.label) edges: \(node.neighbors.map { $0.neighbor.label})]" } } return description } public func findNodeWithLabel(_ label: String) -> Node { return nodes.filter { $0.label == label }.first! } public func duplicate() -> Graph { let duplicated = Graph() for node in nodes { _ = duplicated.addNode(node.label) } for node in nodes { for edge in node.neighbors { let source = duplicated.findNodeWithLabel(node.label) let neighbour = duplicated.findNodeWithLabel(edge.neighbor.label) duplicated.addEdge(source, neighbor: neighbour) } } return duplicated } } public func == (lhs: Graph, rhs: Graph) -> Bool { return lhs.nodes == rhs.nodes }
队列一样是一种数据结构,它遵循FIFO的原则,由于Swift没有现成的这个数据结构,所以咱们手动实现一个。网络
值得指出的是,为了提升性能,咱们针对在数组中读取数据作了优化。好比,当在数组中取出第一个值时,若是不作优化,那么这一步的消耗为O(n),咱们采起的解决方法就是把该位置先置为nil,而后设置一个阈值,当达到阈值时,在对数组作进不去的处理。数据结构
这一部分的代码至关简单app
Queue.swift public struct Queue<T> { fileprivate var array = [T?]() fileprivate var head = 0 public init() { } public var isEmpty: Bool { return count == 0 } public var count: Int { return array.count - head } public mutating func enqueue(_ element: T) { array.append(element) } public mutating func dequeue() -> T? { guard head < array.count, let element = array[head] else { return nil } array[head] = nil head += 1 let percentage = Double(head) / Double(array.count) if array.count > 50 && percentage > 0.25 { array.removeFirst(head) head = 0 } return element } public var front: T? { if isEmpty { return nil } else { return array[head] } } }
其实这个算法的思想也很简单,咱们已源点为中心,一层一层的往外查找,在遍历到某一层的某个节点时,若是该节点是咱们要找的数据,那么就退出循环,若是没找到,那么就把该节点的neighbor节点加入到队列中,这就是该算法的核心原理。性能
打破循环的条件须要根据实际状况来设定。
//: Playground - noun: a place where people can play import UIKit import Foundation var str = "Hello, playground" func breadthFirstSearch(_ graph: Graph, source: Node) -> [String] { /// 建立一个队列并把源Node放入这个队列中 var queue = Queue<Node>() queue.enqueue(source) /// 建立一个数组用于存放结果 var nodesResult = [source.label] /// 设置Node的visited为true,由于咱们会把这个当作一个开关 source.visited = true /// 开始遍历 while let node = queue.dequeue() { for edge in node.neighbors { let neighborNode = edge.neighbor if !neighborNode.visited { queue.enqueue(neighborNode) neighborNode.visited = true nodesResult.append(neighborNode.label) } } } return nodesResult } let graph = Graph() let nodeA = graph.addNode("a") let nodeB = graph.addNode("b") let nodeC = graph.addNode("c") let nodeD = graph.addNode("d") let nodeE = graph.addNode("e") let nodeF = graph.addNode("f") let nodeG = graph.addNode("g") let nodeH = graph.addNode("h") graph.addEdge(nodeA, neighbor: nodeB) graph.addEdge(nodeA, neighbor: nodeC) graph.addEdge(nodeB, neighbor: nodeD) graph.addEdge(nodeB, neighbor: nodeE) graph.addEdge(nodeC, neighbor: nodeF) graph.addEdge(nodeC, neighbor: nodeG) graph.addEdge(nodeE, neighbor: nodeH) graph.addEdge(nodeE, neighbor: nodeF) graph.addEdge(nodeF, neighbor: nodeG) let nodesExplored = breadthFirstSearch(graph, source: nodeA) print(nodesExplored)
实现的代码不是重点,重要的是理解这些思想,在实际状况中可以得出解决的方法。固然跟实现的语言也没有关系。
使用playground时,command + 1
能够看到Source文件夹,把单独的类放进去就能够加载进来了。上边的内容来自这个网站swift-algorithm-club