1.3_数据的特征预处理

数据的特征预处理

单个特征

(1)归一化python

归一化首先在特征(维度)很是多的时候,能够防止某一维或某几维对数据影响过大,也是为了把不一样来源的数据统一到一个参考区间下,这样比较起来才有意义,其次能够程序能够运行更快。 例如:一我的的身高和体重两个特征,假如体重50kg,身高175cm,因为两个单位不同,数值大小不同。若是比较两我的的体型差距时,那么身高的影响结果会比较大,k-临近算法会有这个距离公式。git

min-max方法算法

经常使用的方法是经过对原始数据进行线性变换把数据映射到[0,1]之间,变换的函数为:数组

X^{'}{=}\frac{x-min}{max-min}X​​​​=maxminxmin​​app

其中min是样本中最小值,max是样本中最大值,注意在数据流场景下最大值最小值是变化的,另外,最大值与最小值很是容易受异常点影响,因此这种方法鲁棒性较差,只适合传统精确小数据场景。dom

  • min-max自定义处理

这里咱们使用相亲约会对象数据在MatchData.txt,这个样本时男士的数据,三个特征,玩游戏所消耗时间的百分比、每一年得到的飞行常客里程数、每周消费的冰淇淋公升数。而后有一个 所属类别,被女士评价的三个类别,不喜欢、魅力通常、极具魅力。 首先导入数据进行矩阵转换处理函数

import numpy as np def data_matrix(file_name): """ 将文本转化为matrix :param file_name: 文件名 :return: 数据矩阵 """ fr = open(file_name) array_lines = fr.readlines() number_lines = len(array_lines) return_mat = zeros((number_lines, 3)) # classLabelVector = []
  index = 0 for line in array_lines: line = line.strip() list_line = line.split('\t') return_mat[index,:] = list_line[0:3] # if(listFromLine[-1].isdigit()):
    # classLabelVector.append(int(listFromLine[-1]))
    # else:
    # classLabelVector.append(love_dictionary.get(listFromLine[-1]))
    # index += 1
  return return_mat

 

输出结果为测试

[[  4.09200000e+04   8.32697600e+00   9.53952000e-01] [ 1.44880000e+04   7.15346900e+00   1.67390400e+00] [ 2.60520000e+04   1.44187100e+00   8.05124000e-01] ..., [ 2.65750000e+04   1.06501020e+01   8.66627000e-01] [ 4.81110000e+04   9.13452800e+00   7.28045000e-01] [ 4.37570000e+04   7.88260100e+00   1.33244600e+00]]

 

咱们查看数据集会发现,有的数值大到几万,有的才个位数,一样若是计算两个样本之间的距离时,其中一个影响会特别大。也就是说飞行里程数对于结算结果或者说相亲结果影响较大,可是统计的人以为这三个特征同等重要,因此须要将数据进行这样的处理。编码

这样每一个特征任意的范围将变成[0,1]的区间内的值,或者也能够根据需求处理到[-1,1]之间,咱们再定义一个函数,进行这样的转换。spa

def feature_normal(data_set): """ 特征归一化 :param data_set: :return: """
    # 每列最小值
    min_vals = data_set.min(0) # 每列最大值
    max_vals = data_set.max(0) ranges = max_vals - min_vals norm_data = np.zeros(np.shape(data_set)) # 得出行数
    m = data_set.shape[0] # 矩阵相减
    norm_data = data_set - np.tile(min_vals, (m,1)) # 矩阵相除
    norm_data = norm_data/np.tile(ranges, (m, 1))) return norm_data

 

输出结果为

[[ 0.44832535  0.39805139  0.56233353] [ 0.15873259  0.34195467  0.98724416] [ 0.28542943  0.06892523  0.47449629] ..., [ 0.29115949  0.50910294  0.51079493] [ 0.52711097  0.43665451  0.4290048 ] [ 0.47940793  0.3768091   0.78571804]]

 

这样得出的结果都很是相近,这样的数据能够直接提供测试验证了

  • min-max的scikit-learn处理

scikit-learn.preprocessing中的类MinMaxScaler,将数据矩阵缩放到[0,1]之间

 
     

(3)标准化

经常使用的方法是z-score标准化,通过处理后的数据均值为0,标准差为1,处理方法是:

>>> X_train = np.array([[ 1., -1.,  2.], ... [ 2., 0., 0.], ... [ 0., 1., -1.]]) ... >>> min_max_scaler = preprocessing.MinMaxScaler() >>> X_train_minmax = min_max_scaler.fit_transform(X_train) >>> X_train_minmax array([[ 0.5       ,  0.        ,  1. ], [ 1.        ,  0.5       ,  0.33333333], [ 0. , 1.        ,  0.        ]])

 

X^{'}{=}\frac{x-\mu}{\sigma}X​​​​=σxμ​​

其中\muμ是样本的均值,\sigmaσ是样本的标准差,它们能够经过现有的样本进行估计,在已有的样本足够多的状况下比较稳定,适合嘈杂的数据场景

sklearn中提供了StandardScalar类实现列标准化:

In [2]: import numpy as np In [3]: X_train = np.array([[ 1., -1.,  2.],[ 2.,  0.,  0.],[ 0.,  1., -1.]]) In [4]: from sklearn.preprocessing import StandardScaler In [5]: std = StandardScaler() In [6]: X_train_std = std.fit_transform(X_train) In [7]: X_train_std Out[7]: array([[ 0. , -1.22474487,  1.33630621], [ 1.22474487,  0.        , -0.26726124], [-1.22474487,  1.22474487, -1.06904497]])

 

(3)缺失值

因为各类缘由,许多现实世界的数据集包含缺乏的值,一般编码为空白,NaN或其余占位符。然而,这样的数据集与scikit的分类器不兼容,它们假设数组中的全部值都是数字,而且都具备和保持含义。使用不完整数据集的基本策略是丢弃包含缺失值的整个行和/或列。然而,这是以丢失多是有价值的数据(即便不完整)的代价。更好的策略是估算缺失值,即从已知部分的数据中推断它们。

(1)填充缺失值 使用sklearn.preprocessing中的Imputer类进行数据的填充

class Imputer(sklearn.base.BaseEstimator, sklearn.base.TransformerMixin) """ 用于完成缺失值的补充 :param param missing_values: integer or "NaN", optional (default="NaN") 丢失值的占位符,对于编码为np.nan的缺失值,使用字符串值“NaN” :param strategy: string, optional (default="mean") 插补策略 若是是“平均值”,则使用沿轴的平均值替换缺失值 若是为“中位数”,则使用沿轴的中位数替换缺失值 若是“most_frequent”,则使用沿轴最频繁的值替换缺失 :param axis: integer, optional (default=0) 插补的轴 若是axis = 0,则沿列排列 若是axis = 1,则沿行排列 """
>>> import numpy as np >>> from sklearn.preprocessing import Imputer >>> imp = Imputer(missing_values='NaN', strategy='mean', axis=0) >>> imp.fit([[1, 2], [np.nan, 3], [7, 6]]) Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0) >>> X = [[np.nan, 2], [6, np.nan], [7, 6]] >>> print(imp.transform(X)) [[ 4.          2. ] [ 6.          3.666...] [ 7.          6.        ]]

 

多个特征

降维

PCA(Principal component analysis),主成分分析。特色是保存数据集中对方差影响最大的那些特征,PCA极其容易受到数据中特征范围影响,因此在运用PCA前必定要作特征标准化,这样才能保证每维度特征的重要性等同。

sklearn.decomposition.PCA

class PCA(sklearn.decomposition.base) """ 主成成分分析 :param n_components: int, float, None or string 这个参数能够帮咱们指定但愿PCA降维后的特征维度数目。最经常使用的作法是直接指定降维到的维度数目,此时n_components是一个大于1的整数。 咱们也能够用默认值,即不输入n_components,此时n_components=min(样本数,特征数) :param whiten: bool, optional (default False) 判断是否进行白化。所谓白化,就是对降维后的数据的每一个特征进行归一化。对于PCA降维自己来讲通常不须要白化,若是你PCA降维后有后续的数据处理动做,能够考虑白化,默认值是False,即不进行白化 :param svd_solver: 选择一个合适的SVD算法来降维,通常来讲,使用默认值就够了。 """

 

经过一个例子来看

>>> import numpy as np >>> from sklearn.decomposition import PCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = PCA(n_components=2) >>> pca.fit(X) PCA(copy=True, iterated_power='auto', n_components=2, random_state=None, svd_solver='auto', tol=0.0, whiten=False) >>> print(pca.explained_variance_ratio_) [ 0.99244...  0.00755...]
相关文章
相关标签/搜索