最近在写SQL语句时,对选择IN 仍是Exists 犹豫不决,因而把两种方法的SQL都写出来对比一下执行效率,发现IN的查询效率比Exists高了不少,因而想固然的认为IN的效率比Exists好,但本着寻根究底的原则,我想知道这个结论是否适用全部场景,以及为何会出现这个结果。
网上查了一下相关资料,大致能够概括为:外部表小,内部表大时,适用Exists;外部表大,内部表小时,适用IN。那我就困惑了,由于个人SQL语句里面,外表只有1W级别的数据,内表有30W级别的数据,按网上的说法应该是Exists的效率会比IN高的,但个人结果恰好相反!!
“没有调查就没有发言权”!因而我开始研究IN 和Exists的实际执行过程,从实践的角度出发,在根本上去寻找缘由,因而有了这篇博文分享。mysql
个人实验数据包括两张表:t_author表 和 t_poetry表。
对应表的数据量:
t_author表,13355条记录;
t_poetry表,289917条记录。
对应的表结构以下:
CREATE TABLE t_poetry
(id
bigint(20) NOT NULL AUTO_INCREMENT,poetry_id
bigint(20) NOT NULL COMMENT '诗词id',poetry_name
varchar(200) NOT NULL COMMENT '诗词名称',
<font color=red> author_id
bigint(20) NOT NULL COMMENT '做者id'</font>
PRIMARY KEY (id
),
<font color=red>
UNIQUE KEY pid_idx
(poetry_id
) USING BTREE,
KEY aid_idx
(author_id
) USING BTREE</font>
) ENGINE=InnoDB AUTO_INCREMENT=291270 DEFAULT CHARSET=utf8mb4sql
CREATE TABLE t_author
(id
int(15) NOT NULL AUTO_INCREMENT,
<font color=red> author_id
bigint(20) NOT NULL,</font>author_name
varchar(32) NOT NULL,dynasty
varchar(16) NOT NULL,poetry_num
int(8) NOT NULL DEFAULT '0'
PRIMARY KEY (id
),
<font color=red>UNIQUE KEY authorid_idx
(author_id
) USING BTREE</font>
) ENGINE=InnoDB AUTO_INCREMENT=13339 DEFAULT CHARSET=utf8mb4缓存
sql示例:select * from tabA where tabA.x in (select x from tabB where y>0 );
其执行计划:
(1)执行tabB表的子查询,获得结果集B,可使用到tabB表的索引y;
(2)执行tabA表的查询,查询条件是tabA.x在结果集B里面,可使用到tabA表的索引x。mysql优化
sql示例:select from tabA where exists (select from tabB where y>0);
其执行计划:
(1)先将tabA表全部记录取到。
(2)逐行针对tabA表的记录,去关联tabB表,判断tabB表的子查询是否有返回数据,5.5以后的版本使用Block Nested Loop(Block 嵌套循环)。
(3)若是子查询有返回数据,则将tabA当前记录返回到结果集。
tabA至关于取全表数据遍历,tabB可使用到索引。ide
实验针对相同结果集的IN和Exists 的SQL语句进行分析。
包含IN的SQL语句:
select from t_author ta where author_id in
(select author_id from t_poetry tp where tp.poetry_id>3650 );
包含Exists的SQL语句:
select from t_author ta where exists
(select * from t_poetry tp where tp.poetry_id>3650 and tp.author_id=ta.author_id);oop
t_author表,13355条记录;t_poetry表,子查询筛选结果集 where poetry_id>293650 ,121条记录;优化
使用exists耗时0.94S, 使用in耗时0.03S,<font color=red>IN 效率高于Exists</font>。3d
对t_poetry表的子查询结果集很小,且二者在t_poetry表都能使用索引,对t_poetry子查询的消耗基本一致。二者区别在于,使用 in 时,t_author表能使用索引:
使用exists时,t_author表全表扫描:
在子查询结果集较小时,查询耗时主要表如今对t_author表的遍历上。code
t_author表,13355条记录;t_poetry表,子查询筛选结果集 where poetry_id>3650 ,287838条记录;blog
使用exists耗时0.12S, 使用in耗时0.48S,<font color=red>Exists IN</font>。
二者的索引使用状况跟第一次实验是一致的,惟一区别是子查询筛选结果集的大小不一样,但实验结果已经跟第一次的不一样了。这种状况下子查询结果集很大,咱们看看mysql的查询计划:
使用in时,因为子查询结果集很大,对t_author和t_poetry表都接近于全表扫描,此时对t_author表的遍历耗时差别对总体效率影响能够忽略,执行计划里多了一行<auto_key>,在接近全表扫描的状况下,mysql优化器选择了auto_key来遍历t_author表:
使用exists时,数据量的变化没有带来执行计划的改变,但因为子查询结果集很大,5.5之后的MySQL版本在exists匹配查询结果时使用的是Block Nested-Loop(Block嵌套循环,引入join buffer,相似于缓存功能)开始对查询效率产生显著影响,尤为针对<font color=red>子查询结果集很大</font>的状况下能显著改善查询匹配效率:
根据上述两个实验及实验结果,咱们能够较清晰的理解IN 和Exists的执行过程,并概括出IN 和Exists的适用场景:
仅对不一样数据集状况下的上述exists语句分析时发现,数据集越大,消耗的时间反而变小,以为很奇怪。具体查询条件为:where tp.poetry_id>3650,耗时0.13Swhere tp.poetry_id>293650,耗时0.46S可能缘由:条件值大,查询越靠后,须要遍历的记录越多,形成最终消耗越多的时间。这个解释有待进一步验证后再补充。