集成学习之Adaboost算法

1. 回顾boosting算法的基本原理     在集成学习原理小结中,我们已经讲到了boosting算法系列的基本思想,如下图:     从图中可以看出,Boosting算法的工作机制是首先从训练集用初始权重训练出一个弱学习器1,根据弱学习的学习误差率表现来更新训练样本的权重,使得之前弱学习器1学习误差率高的训练样本点的权重变高,使得这些误差率高的点在后面的弱学习器2中得到更多的重视。然后基于调
相关文章
相关标签/搜索