【数字图像处理】Bilateral Filters

【数字图像处理】Bilateral Filters

https://www.yuque.com/lart/idh721/bf算法

简单介绍

双边滤波是一种非线性的能够模糊图像而且能保留必定的边缘信息的技术。app

它可以将图像分解成不一样的尺度,而不会在修改后产生光晕(haloes),这使得它在计算摄影应用中无处不在(ubiquitous),例如调色,风格转换,重调光照,去噪(tone mapping, style transfer, relighting, and denoising)。dom

双边滤波的成功主要有如下一些:ui

  • 它的公式很简单:每一个像素被它的邻居的加权平均值代替。这方面很重要,由于很容易得到关于其行为的直观理解,从而适应特定于应用程序的需求并实现它。
  • 它只依赖于两个参数,这两个参数表示要保留的特征的大小和对比度。
  • 它能够以非迭代的方式使用。这使得参数很容易设置,由于它们的影响不是经过屡次迭代累积的。
  • 因为高效的数值策略,以及,甚至在图形硬件可用的状况下,它能够以交互速度在大的图像上进行计算。

具体表达

双边滤波和通常的高斯滤波(卷积)有着密切的关联。spa

Gaussian Convolution

image.png

  • \(I_p\)表示图像在像素位置p上的值,对于灰度图,则表示单个数值
  • \(F[I]\)表示图像\(I\)通过滤波器\(F\)处理后的输出
  • \(S\)表示全部可能的图像位置集合,将其命名为spatial domain
  • \(R\)表示全部可能的像素值集合,将其命名为range domain
  • \(\sum_{p \in S}\)表示对于全部的使用p索引的图像像素进行加和
  • \(| \cdot |\)表示绝对值
  • \(|| \cdot ||\)表示L2范数,这里使用\(||p-q||\)表示对应于位置p和q的两个像素之间的欧氏距离
  • \(\sigma\)表示邻域范围

image.png

Bilateral Filtering

双边滤波以一种相似于高斯卷积的方法定义为邻近像素的加权平均。不一样的是,双边滤波考虑了邻居的值的差别,在平滑的时候能够保留边缘信息。blog

双边滤波的关键想法在于,对于一个影响其余像素的像素,它应该不仅出如今相近的位置,也应该有着类似的值索引

双边滤波的一个重要特征是权值相乘:若是任一权值接近于零,则不发平生滑做用。以大的空间高斯分布与小的范围高斯分布相结合的算法为例,尽管空间范围很大,但只能实现有限的平滑效果。范围权重会强制保留轮廓。get

image.png

  • \(\sigma_s\)\(\sigma_r\)表示对于图像\(I\)的滤波的量(也就是滤波器范围)
  • \(G_{\sigma_s}\)表示空间高斯加权,以下降远处像素的影响
  • \(G_{\sigma_r}\)表示范围高斯加权,以下降像素q在亮度值与像素p差别较大的时候,形成的影响

image.png

相关连接

相关文章
相关标签/搜索