最小二乘法与极大似然估计

一:背景:当给出我们一些样本点,我们可以用一条直接对其进行拟合,如y= a0+a1x1+a2x2,公式中y是样本的标签,{x1,x2,x3}是特征,当我们给定特征的大小,让你预测标签,此时我们就需要事先知道参数{a1,a2}。而最小二乘法和最大似然估计就是根据一些给定样本(包括标签值)去对参数进行估计<参数估计的方法>。一般用于线性回归中进行参数估计通过求导求极值得到参数进行拟合,当然也可以用牛顿
相关文章
相关标签/搜索