咱们在上篇笔记中介绍了感知机的理论知识,讨论了感知机的由来、工做原理、求解策略、收敛性。这篇笔记中,咱们亲自动手写代码,使用感知机算法解决实际问题。python
先从一个最简单的问题开始,用感知机算法解决OR逻辑的分类。git
import numpy as np import matplotlib.pyplot as plt x = [0,0,1,1] y = [0,1,0,1] plt.scatter(x[0],y[0], color="red",label="negative") plt.scatter(x[1:],y[1:], color="green",label="positive") plt.legend(loc="best") plt.show()
下面咱们来定义一个函数,用来断定一个样本点是否被正确分类了。因为此例中样本点是二维的,所以权重向量也相应的为二维,能够定义为\(w = (w_1, w_2)\),在Python中能够使用列表来表达,例如w = [0, 0]
,而样本到超平面的距离天然就是w[0] * x[0] + w[1] * x[1] +b
。下面给出完整的函数。算法
def decide(data,label,w,b): result = w[0] * data[0] + w[1] * data[1] - b print("result = ",result) if np.sign(result) * label <= 0: w[0] += 1 * (label - result) * data[0] w[1] += 1 * (label - result) * data[1] b += 1 * (label - result)*(-1) return w,b
写完核心函数后,咱们还须要写一个调度函数,这个函数提供遍历每个样本点的功能。数组
def run(data, label): w,b = [0,0],0 for epoch in range(10): for item in zip(data, label): dataset,labelset = item[0],item[1] w,b = decide(dataset, labelset, w, b) print("dataset = ",dataset, ",", "w = ",w,",","b = ",b) print(w,b)
data = [(0,0),(0,1),(1,0),(1,1)] label = [0,1,1,1]
run(data,label)
result = 0 dataset = (0, 0) , w = [0, 0] , b = 0 result = 0 dataset = (0, 1) , w = [0, 1] , b = -1 result = 1 dataset = (1, 0) , w = [0, 1] , b = -1 result = 2 dataset = (1, 1) , w = [0, 1] , b = -1 result = 1 dataset = (0, 0) , w = [0, 1] , b = 0 result = 1 dataset = (0, 1) , w = [0, 1] , b = 0 result = 0 dataset = (1, 0) , w = [1, 1] , b = -1 result = 3 dataset = (1, 1) , w = [1, 1] , b = -1 result = 1 dataset = (0, 0) , w = [1, 1] , b = 0 result = 1 dataset = (0, 1) , w = [1, 1] , b = 0 result = 1 后面的迭代这里省略不贴,参数稳定下来,算法已经收敛
下面看一个来自UCI的数据集:PIMA糖尿病数据集,例子来自《机器学习算法视角》第三章网络
import os import pylab as pl import numpy as np import pandas as pd
os.chdir(r"DataSets\pima-indians-diabetes-database")
pima = np.loadtxt("pima.txt", delimiter=",", skiprows=1)
pima.shape
(768, 9)
indices0 = np.where(pima[:,8]==0) indices1 = np.where(pima[:,8]==1)
pl.ion() pl.plot(pima[indices0,0],pima[indices0,1],"go") pl.plot(pima[indices1,0],pima[indices1,1],"rx") pl.show()
数据预处理app
1.将年龄离散化dom
pima[np.where(pima[:,7]<=30),7] = 1 pima[np.where((pima[:,7]>30) & (pima[:,7]<=40)),7] = 2 pima[np.where((pima[:,7]>40) & (pima[:,7]<=50)),7] = 3 pima[np.where((pima[:,7]>50) & (pima[:,7]<=60)),7] = 4 pima[np.where(pima[:,7]>60),7] = 5
2.将女性的怀孕次数大于8次的统一用8次代替机器学习
pima[np.where(pima[:,0]>8),0] = 8
3.将数据标准化处理ide
pima[:,:8] = pima[:,:8]-pima[:,:8].mean(axis=0) pima[:,:8] = pima[:,:8]/pima[:,:8].var(axis=0)
4.切分训练集和测试集函数
trainin = pima[::2,:8] testin = pima[1::2,:8] traintgt = pima[::2,8:9] testtgt = pima[1::2,8:9]
定义模型
class Perceptron: def __init__(self, inputs, targets): # 设置网络规模 # 记录输入向量的维度,神经元的维度要和它相等 if np.ndim(inputs) > 1: self.nIn = np.shape(inputs)[1] else: self.nIn = 1 # 记录目标向量的维度,神经元的个数要和它相等 if np.ndim(targets) > 1: self.nOut = np.shape(targets)[1] else: self.nOut = 1 # 记录输入向量的样本个数 self.nData = np.shape(inputs)[0] # 初始化网络,这里加1是为了包含偏置项 self.weights = np.random.rand(self.nIn + 1, self.nOut) * 0.1 - 0.05 def train(self, inputs, targets, eta, epoch): """训练环节""" # 和前面处理偏置项同步地,这里对输入样本加一项-1,与W0相匹配 inputs = np.concatenate((inputs, -np.ones((self.nData,1))),axis=1) for n in range(epoch): self.activations = self.forward(inputs) self.weights -= eta * np.dot(np.transpose(inputs), self.activations - targets) return self.weights def forward(self, inputs): """神经网路前向传播环节""" # 计算 activations = np.dot(inputs, self.weights) # 判断是否激活 return np.where(activations>0, 1, 0) def confusion_matrix(self, inputs, targets): # 计算混淆矩阵 inputs = np.concatenate((inputs, -np.ones((self.nData,1))),axis=1) outputs = np.dot(inputs, self.weights) nClasses = np.shape(targets)[1] if nClasses == 1: nClasses = 2 outputs = np.where(outputs<0, 1, 0) else: outputs = np.argmax(outputs, 1) targets = np.argmax(targets, 1) cm = np.zeros((nClasses, nClasses)) for i in range(nClasses): for j in range(nClasses): cm[i,j] = np.sum(np.where(outputs==i, 1,0) * np.where(targets==j, 1, 0)) print(cm) print(np.trace(cm)/np.sum(cm))
print("Output after preprocessing of data") p = Perceptron(trainin,traintgt) p.train(trainin,traintgt,0.15,10000) p.confusion_matrix(testin,testtgt)
Output after preprocessing of data [[ 69. 86.] [182. 47.]] 0.3020833333333333
这个案例使用感知机训练获得的结果比较糟糕,这里只是做为展现算法的例子。
最后看一个使用感知机算法识别MNIST手写数字的例子。代码借鉴了Kaggle上的kernel。
import numpy as np import pandas as pd import matplotlib.pyplot as plt
train = pd.read_csv(r"DataSets\Digit_Recognizer\train.csv", engine="python") test = pd.read_csv(r"DataSets\Digit_Recognizer\test.csv", engine="python")
print("Training set has {0[0]} rows and {0[1]} columns".format(train.shape)) print("Test set has {0[0]} rows and {0[1]} columns".format(test.shape))
Training set has 42000 rows and 785 columns Test set has 28000 rows and 784 columns
建立label
,它的size为 (42000, 1)
建立training set
,size为(42000, 784)
建立weights
,size为(10,784)
,这可能有点很差理解。咱们知道,权重向量是描述神经元的,784是维度,表示一个输入样本有784维,相应的与它对接的神经元也要有784维。同时,要记住一个神经元只能输出一个output,而在数字识别问题中,咱们期待的是输入一个样本数据,能返回10个数字,而后依几率判断这个样本是哪一个数字的可能性最大。因此,咱们须要10个神经元,这就是(10,784)
的来历。
trainlabels = train.label trainlabels.shape
(42000,)
traindata = np.asmatrix(train.loc[:,"pixel0":]) traindata.shape
(42000, 784)
weights = np.zeros((10,784)) weights.shape
(10, 784)
这里能够先看一个样本,找找感受。注意原数据是压缩成了784维的数组,咱们须要将它变回28*28的图片
# 从矩阵中随便取一行 samplerow = traindata[123:124] # 从新变成28*28 samplerow = np.reshape(samplerow, (28,28)) plt.imshow(samplerow, cmap="hot")
这里咱们对训练数据集循环若干次,而后重点关注错误率曲线
# 先建立一个列表,用来记录每一轮训练的错误率 errors = [] epoch = 20 for epoch in range(epoch): err = 0 # 对每个样本(亦矩阵中的每一行) for i, data in enumerate(traindata): # 建立一个列表,用来记录每一个神经元输出的值 output = [] # 对每一个神经元都作点乘操做,并记录下输出值 for w in weights: output.append(np.dot(data, w)) # 这里简单的取输出值最大者为最有可能的 guess = np.argmax(output) # 实际的值为标签列表中对应项 actual = trainlabels[i] # 若是估计值和实际值不一样,则分类错误,须要更新权重向量 if guess != actual: weights[guess] = weights[guess] - data weights[actual] = weights[actual] + data err += 1 # 计算迭代完42000个样本以后,错误率 = 错误次数/样本个数 errors.append(err/42000)
x = list(range(20)) plt.plot(x, errors)
[<matplotlib.lines.Line2D at 0x5955c50>]
从图能够看出,达到15次迭代时,错误率已经有上升的趋势了,开始过拟合了。
感知机是一个很是简单的算法,以至于很难在真正的场景中使用感知机算法。这里举的3个例子,都旨在于动手写代码实现这个算法,找找感受。稍有经验的读者想必会好奇:为何没有使用Scikit-Learn这个包,这部分实际上是笔者另有计划,打算结合算法写Scikit-Learn的源码解读笔记。固然,限于我的水平,不必定能解析到精髓,但勉力而为吧。下篇会写Multi-Layer-Perceptron算法的原理,在那里咱们很容易看到,纵使是简单的感知机,只要加一个隐层,就能大幅提高其分类能力。另外,也会抽空写一篇感知机Sklearn源码解读的文章。有任何问题,欢迎你们留言讨论。