GAN生成对抗网络入门理解

有兴趣阅读GAN鼻祖之作的给出链接:  2014年NIPS Generative Adversarial Net 原理解释 GAN核心思想:生成器G与判别器D,双方博弈。 生成器G的输入是手工样本/噪声/随机数之类,通过模型学习(包装)成一个逼真的样本进行输出。这里所谓逼真指的是逼近真实的样本。目的:使得自己造样本的能力尽可能强,强到什么程度呢,你判别网络没法判断我是真样本还是假样本。 判别器D的
相关文章
相关标签/搜索