如下实验基于python==3.六、opencv-python==4.1.0.2五、imutils==0.5.2html
该方法第一个参数为文件名filename(文件路径+文件名)python
第二个为读取方式flags,可选参数git
IMREAD_ANYCOLOR = 4 IMREAD_ANYDEPTH = 2 IMREAD_COLOR = 1 IMREAD_GRAYSCALE = 0 IMREAD_IGNORE_ORIENTATION = 128 IMREAD_LOAD_GDAL = 8 IMREAD_REDUCED_COLOR_2 = 17 IMREAD_REDUCED_COLOR_4 = 33 IMREAD_REDUCED_COLOR_8 = 65 IMREAD_REDUCED_GRAYSCALE_2 = 16 IMREAD_REDUCED_GRAYSCALE_4 = 32 IMREAD_REDUCED_GRAYSCALE_8 = 64 IMREAD_UNCHANGED = -1
前4中读取方式的shape和显示效果以下github
可见IMREAD_GRAYSCALE
和IMREAD_ANYDEPTH
都只读取了一层灰度图像测试
而IMREAD_COLOR
和IMREAD_ANYCOLOR
读取了3层彩色图像3d
由于这里只测试了jpeg图片,可能在读取其余图片的状况下会有不一样结果,你们能够本身试一下code
cv2.IMREAD_GRAYSCALE (2048, 1536) cv2.IMREAD_COLOR (2048, 1536, 3) cv2.IMREAD_ANYDEPTH (2048, 1536) cv2.IMREAD_ANYCOLOR (2048, 1536, 3)
下面是IMREAD_IGNORE_ORIENTATION
、IMREAD_LOAD_GDAL
、IMREAD_UNCHANGED
htm
cv2.IMREAD_IGNORE_ORIENTATION (2048, 1536) cv2.IMREAD_LOAD_GDAL (2048, 1536, 3) cv2.IMREAD_UNCHANGED (2048, 1536, 3)
下面是IMREAD_REDUCED_COLOR_2
、IMREAD_REDUCED_COLOR_4
、IMREAD_REDUCED_COLOR_8
blog
像素分别减小为原来的1/二、1/四、1/8,但依然是彩色像图片
cv2.IMREAD_REDUCED_COLOR_2 (1024, 768, 3) cv2.IMREAD_REDUCED_COLOR_4 (512, 384, 3) cv2.IMREAD_REDUCED_COLOR_8 (256, 192, 3)
下面是IMREAD_REDUCED_GRAYSCALE_2
、IMREAD_REDUCED_GRAYSCALE_4
、IMREAD_REDUCED_GRAYSCALE_8
像素分别减小为原来的1/二、1/四、1/8,而且都是灰度图像
cv2.IMREAD_REDUCED_GRAYSCALE_2 (1024, 768) cv2.IMREAD_REDUCED_GRAYSCALE_4 (512, 384) cv2.IMREAD_REDUCED_GRAYSCALE_8 (256, 192)
注:为了方便比较,以上全部图片在显示的时候又统一缩放为(512, 384)大小的图片并排显示
示例代码已经上传到github