在今年八月中旬,《指尖大冒险》SNS 游戏诞生,其具体的玩法是经过点击屏幕左右区域来控制机器人的前进方向进行跳跃,而阶梯是无穷尽的,若遇到障碍物或者是踩空、或者机器人脚下的阶砖陨落,那么游戏失败。算法
笔者对游戏进行了简化改造,可经过扫下面二维码进行体验。数组
该游戏能够被划分为三个层次,分别为景物层、阶梯层、背景层,以下图所示。bash
整个游戏主要围绕着这三个层次进行开发:dom
而本文主要来说讲如下几点核心的技术内容:性能
下面,本文逐一进行剖析其开发思路与难点。学习
景物层负责两侧树叶装饰的渲染,树叶分为左右两部分,紧贴游戏容器的两侧。优化
在用户点击屏幕操控机器人时,两侧树叶会随着机器人前进的动做反向滑动,来营造出游戏运动的效果。而且,因为该游戏是无穷尽的,所以,须要对两侧树叶实现循环向下滑动的动画效果。动画
对于循环滑动的实现,首先要求设计提供可先后无缝衔接的场景图,而且建议其场景图高度或宽度大于游戏容器的高度或宽度,以减小重复绘制的次数。ui
而后按照如下步骤,咱们就能够实现循环滑动:this
用伪代码描述以下:
12345678910111213141516复制代码 |
// 设置循环节点transThreshold = stageHeight;// 获取滑动后的新位置,transY是滑动偏移量lastPosY1 = leafCon1.y + transY; lastPosY2 = leafCon2.y + transY;// 分别进行滑动if leafCon1.y >= transThreshold // 若遇到其循环节点,leafCon1重置位置 then leafCon1.y = lastPosY2 - leafHeight; else leafCon1.y = lastPosY1;if leafCon2.y >= transThreshold // 若遇到其循环节点,leafCon2重置位置 then leafCon2.y = lastPosY1 - leafHeight; else leafCon2.y = lastPosY2;复制代码 |
在实际实现的过程当中,再对位置变化过程加入动画进行润色,无限循环滑动的动画效果就出来了。
随机生成阶梯是游戏的最核心部分。根据游戏的需求,阶梯由「无障碍物的阶砖」和「有障碍物的阶砖」的组成,而且阶梯的生成是随机性。
其中,无障碍阶砖组成一条畅通无阻的路径,虽然整个路径的走向是随机性的,可是每一个阶砖之间是相对规律的。
由于,在游戏设定里,用户只能经过点击屏幕的左侧或者右侧区域来操控机器人的走向,那么下一个无障碍阶砖必然在当前阶砖的左上方或者右上方。
用 0、1 分别表明左上方和右上方,那么咱们就能够创建一个无障碍阶砖集合对应的数组(下面简称无障碍数组),用于记录无障碍阶砖的方向。
而这个数组就是包含 0、1 的随机数数组。例如,若是生成以下阶梯中的无障碍路径,那么对应的随机数数组为 [0, 0, 1, 1, 0, 0, 0, 1, 1, 1]。
障碍物阶砖也是有规律而言的,若是存在障碍物阶砖,那么它只能出如今当前阶砖的下一个无障碍阶砖的反方向上。
根据游戏需求,障碍物阶砖不必定在邻近的位置上,其相对当前阶砖的距离是一个阶砖的随机倍数,距离范围为 1~3。
一样地,咱们能够用 0、一、二、3 表明其相对距离倍数,0 表明不存在障碍物阶砖,1 表明相对一个阶砖的距离,以此类推。
所以,障碍阶砖集合对应的数组就是包含 0、一、二、3 的随机数数组(下面简称障碍数组)。例如,若是生成以下图中的障碍阶砖,那么对应的随机数数组为 [0, 1, 1, 2, 0, 1, 3, 1, 0, 1]。
除此以外,根据游戏需求,障碍物阶砖出现的几率是不均等的,不存在的几率为 50% ,其相对距离越远几率越小,分别为 20%、20%、10%。
根据阶梯的生成规律,咱们须要创建两个数组。
对于无障碍数组来讲,随机数 0、1 的出现几率是均等的,那么咱们只须要利用 Math.random()
来实现映射,用伪代码表示以下:
1234复制代码 |
// 生成随机数i,min <= i < maxfunction getRandomInt(min, max) { return Math.floor(Math.random() * (max - min) + min);}复制代码 |
12345复制代码 |
// 生成指定长度的0、1随机数数组arr = [];for i = 0 to len arr.push(getRandomInt(0,2));return arr;复制代码 |
而对于障碍数组来讲,随机数 0、一、二、3 的出现几率分别为:P(0)=50%、P(1)=20%、P(2)=20%、P(3)=10%,是不均等几率的,那么生成无障碍数组的办法即是不适用的。
那如何实现生成这种知足指定非均等几率分布的随机数数组呢?
咱们能够利用几率分布转化的理念,将非均等几率分布转化为均等几率分布来进行处理,作法以下:
咱们只要反复执行步骤 4 ,就可获得知足上述非均等几率分布状况的随机数数组——障碍数组。
结合障碍数组生成的需求,其实现步骤以下图所示。
用伪代码表示以下:
1234567891011121314151617181920复制代码 |
// 非均等几率分布PiP = [0.5, 0.2, 0.2, 0.1]; // 获取最小公倍数L = getLCM(P); // 创建几率转化数组A = [];l = 0;for i = 0 to P.length k = L * P[i] + l while l < k A[l] = i; l++;// 获取均等几率分布的随机数s = Math.floor(Math.random() * L);// 返回知足非均等几率分布的随机数return A[s];复制代码 |
对这种作法进行性能分析,其生成随机数的时间复杂度为 O(1) ,可是在初始化数组 A 时可能会出现极端状况,由于其最小公倍数有可能为 100、1000 甚至是达到亿数量级,致使不管是时间上仍是空间上占用都极大。
有没有办法能够进行优化这种极端的状况呢?
通过研究,笔者了解到 Alias Method 算法能够解决这种状况。
Alias Method 算法有一种最优的实现方式,称为 Vose’s Alias Method ,其作法简化描述以下:
若是有兴趣了解具体详细的算法过程与实现原理,能够阅读 Keith Schwarz 的文章《Darts, Dice, and Coins》。
根据 Keith Schwarz 对 Vose’s Alias Method 算法的性能分析,该算法在初始化数组时的时间复杂度始终是 O(n) ,并且随机生成的时间复杂度在 O(1) ,空间复杂度也始终是 O(n) 。
两种作法对比,明显 Vose’s Alias Method 算法性能更加稳定,更适合非均等几率分布状况复杂,游戏性能要求高的场景。
在 Github 上,@jdiscar 已经对 Vose’s Alias Method 算法进行了很好的实现,你能够到这里学习。
最后,笔者仍选择一开始的作法,而不是 Vose’s Alias Method 算法。由于考虑到在生成障碍数组的游戏需求场景下,其几率是可控的,它并不须要特别考虑几率分布极端的可能性,而且其代码实现难度低、代码量更少。
利用随机算法生成无障碍数组和障碍数组后,咱们须要在游戏容器上进行绘制阶梯,所以咱们须要肯定每一块阶砖的位置。
咱们知道,每一块无障碍阶砖必然在上一块阶砖的左上方或者右上方,因此,咱们对无障碍阶砖的位置计算时能够依据上一块阶砖的位置进行肯定。
如上图推算,除去根据设计稿测量肯定第一块阶砖的位置,第n块的无障碍阶砖的位置实际上只须要两个步骤肯定:
其用伪代码表示以下:
123456复制代码 |
// stairSerialNum表明的是在无障碍数组存储的随机方向值direction = stairSerialNum ? 1 : -1;// lastPosX、lastPosY表明上一个无障碍阶砖的x、y轴位置tmpStair.x = lastPosX + direction * (stair.width / 2);tmpStair.y = lastPosY - (stair.height - 26);复制代码 |
接着,咱们继续根据障碍阶砖的生成规律,进行以下图所示推算。
能够知道,障碍阶砖必然在无障碍阶砖的反方向上,须要进行反方向偏移。同时,若障碍阶砖的位置相距当前阶砖为 n 个阶砖位置,那么 x 轴方向上和 y 轴方向上的偏移量也相应乘以 n 倍。
其用伪代码表示以下:
12345678910复制代码 |
// 在无障碍阶砖的反方向oppoDirection = stairSerialNum ? -1 : 1;// barrSerialNum表明的是在障碍数组存储的随机相对距离n = barrSerialNum;// x轴方向上和y轴方向上的偏移量相应为n倍if barrSerialNum !== 0 // 0 表明没有 tmpBarr.x = firstPosX + oppoDirection * (stair.width / 2) * n, tmpBarr.y = firstPosY - (stair.height - 26) * n;复制代码 |
至此,阶梯层完成实现随机生成阶梯。
当游戏开始时,须要启动一个自动掉落阶砖的定时器,定时执行掉落末端阶砖的处理,同时在任务中检查是否有存在屏幕之外的处理,如有则掉落这些阶砖。
因此,除了机器人碰障碍物、走错方向踩空致使游戏失败外,若机器人脚下的阶砖陨落也将致使游戏失败。
而其处理的难点在于:
对于第一个问题,咱们理所固然地想到从底层逻辑上的无障碍数组和障碍数组入手:判断障碍阶砖是否相邻,能够经过同一个下标位置上的障碍数组值是否为1,若为1那么该障碍阶砖与当前末端路径的阶砖相邻。
可是,以此来判断远处的障碍阶砖是不是在同一 y 轴方向上则变得很麻烦,须要对数组进行屡次遍历迭代来推算。
而通过对渲染后的阶梯层观察,咱们能够直接经过 y 轴位置是否相等来解决,以下图所示。
由于不论是来自相邻的,仍是同一 y 轴方向上的无障碍阶砖,它们的 y 轴位置值与末端的阶砖是必然相等的,由于在生成的时候使用的是同一个计算公式。
处理的实现用伪代码表示以下:
12345678910111213复制代码 |
// 记录被掉落阶砖的y轴位置值thisStairY = stair.y; // 掉落该无障碍阶砖stairCon.removeChild(stair);// 掉落同一个y轴位置的障碍阶砖barrArr = barrCon.children;for i in barrArr barr = barrArr[i], thisBarrY = barr.y; if barr.y >= thisStairY // 在同一个y轴位置或者低于 barrCon.removeChild(barr);复制代码 |
那对于第二个问题——判断阶砖是否在屏幕之外,是否是也能够经过比较阶砖的 y 轴位置值与屏幕底部y轴位置值的大小来解决呢?
不是的,经过 y 轴位置来判断反而变得更加复杂。
由于在游戏中,阶梯会在机器人前进完成后会有回移的处理,以保证阶梯始终在屏幕中心呈现给用户。这会致使阶砖的 y 轴位置会发生动态变化,对判断形成影响。
可是咱们根据设计稿得出,一屏幕内最多能容纳的无障碍阶砖是 9 个,那么只要把第 10 个之外的无障碍阶砖及其相邻的、同一 y 轴方向上的障碍阶砖一并移除就能够了。
因此,咱们把思路从视觉渲染层面再转回底层逻辑层面,经过检测无障碍数组的长度是否大于 9 进行处理便可,用伪代码表示以下:
1234567891011复制代码 |
// 掉落无障碍阶砖stair = stairArr.shift();stair && _dropStair(stair);// 阶梯存在数量超过9个以上的部分进行批量掉落if stairArr.length >= 9 num = stairArr.length - 9, arr = stairArr.splice(0, num); for i = 0 to arr.length _dropStair(arr[i]);}复制代码 |
至此,两个难点都得以解决。
为何笔者要选择这几点核心内容来剖析呢?
由于这是咱们常常在游戏开发中常常会遇到的问题:
并且,对于阶梯自动掉落的技术点开发解决,也可以让咱们认识到,游戏开发问题的解决能够从视觉层面以及逻辑底层两方面考虑,学会转一个角度思考,从而将问题解决简单化。
这是本文但愿可以给你们在游戏开发方面带来一些启发与思考的所在。最后,仍是老话,行文仓促,若错漏之处还望指正,如有更好的想法,欢迎留言交流讨论!
另外,本文同时发布在「H5游戏开发」专栏,若是你对该方面的系列文章感兴趣,欢迎关注咱们的专栏。