R语言数据清洗与规整-回归模型为例

数据清洗和规整是进行数据分析的前提条件,数据的清洗和规整通常会花费比进行数据分析更多的时间,正所谓“清洗一小时,分析五秒钟”。 数据清洗和规整要依据实际数据的特征进行,其包括缺失值和冗余值的处理、数据重归类、字符类型转换等。这里将使用“狗熊会”的基础案例 “高考填报志愿,你选好了吗?”的数据进行介绍。该案例用于预测高校录取分数线的相关影响因素,因变量为x2015年平均线。 数据下载链接:http:
相关文章
相关标签/搜索