机器学习-KNN(K近邻算法)

K近邻算法(K-Nearest Neighbor)是一种很基本的机器学习方法,能做分类和回归任务(寻找最近的K个邻居(欧式距离)) KNN的三个基本要素:距离度量、k值的选择和决策规则 距离度量 • 在引例中所画的坐标系,可以叫做特征空间。特征空间中两个实例点的距离是两个实例点相似程度的反应(距离越近,相似度越高)。kNN模型使用的距离一般是欧氏距离,但也可以是其他距离如:曼哈顿距离 k值的选择
相关文章
相关标签/搜索