P-GCN:Graph Convolutional Networks for Temporal Action Localization 2019 ICCV

论文下载链接:https://arxiv.org/pdf/1911.11462.pdf 1 摘要 大多数最先进的行为定位系统都是单独处理每个动作proposal,而不是在学习过程中显式地利用它们之间的关系。然而,proposal之间的关系实际上在行动定位中扮演着重要的角色,因为一个有意义的行动总是由一个视频中的多个proposal组成。在本文中,我们提出利用图卷积网络(GCNs)来挖掘propos
相关文章
相关标签/搜索