最长公共子序列(lcs)

1、什么是最长公共子序列web

   

   什么是最长公共子序列呢?举个简单的例子吧,一个数列S,若分别是两个或多个已知序列的子序列,且是全部符合条件序列中最长的,则S称为已知序列的最长公共子序列。数组


  举例以下,如:有两个随机数列,1 2 3 4 5 6 和 3 4 5 8 9,则它们的最长公共子序列即是:3 4 5。promise


  一直不明白:最长公共子串和最长公共子序列的区别。less

  

   上网查了下,最长公共子串(Longest Common Substirng)和最长公共子序列(Longest Common Subsequence,LCS)的区别为:子串是串的一个连续的部分,子序列则是从不改变序列的顺序,而从序列中去掉任意的元素而得到新的序列;也就是说,子串中字符的位置必须是连续的,子序列则能够没必要连续。ui


2、蛮力法this


   蛮力法是解决最长公共子序列问题最容易想到的方法,即对S的每个子序列,检查是否为T的子序列,从而肯定它是否为S和T的公共子序列,而且选出最长的公共子序列。spa

 

   S和T的全部子序列都检查事后便可求出S和T的最长公共子序列。S的一个子序列相应于下标序列1,2,...,n的一个子序列。所以,S共有2^n个子序列。固然,T也有2^m个子序列。code


   所以,蛮力法的时间复杂度为O(2^n * 2^m),这但是指数级别的啊。orm


3、动态规划方法ip


   一、序列str1和序列str2

 

  ·长度分别为m和n;

  ·建立1个二维数组L[m.n];

    ·初始化L数组内容为0

    ·m和n分别从0开始,m++,n++循环:

       - 若是str1[m] == str2[n],则L[m,n] = L[m - 1, n -1] + 1;

       - 若是str1[m] != str2[n],则L[m,n] = max{L[m,n - 1],L[m - 1, n]}

    ·最后从L[m,n]中的数字必定是最大的,且这个数字就是最长公共子序列的长度

    ·从数组L中找出一个最长的公共子序列


   二、从数组L中查找一个最长的公共子序列


   i和j分别从m,n开始,递减循环直到i = 0,j = 0。其中,m和n分别为两个串的长度。

  ·若是str1[i] == str2[j],则将str[i]字符插入到子序列内,i--,j--;

  ·若是str1[i] != str[j],则比较L[i,j-1]与L[i-1,j],L[i,j-1]大,则j--,不然i--;(若是相等,则任选一个)

根据上图,咱们能够获得其中公共子串:B C B A 和 B D A B。

例题:

 

Description

In a few months the European Currency Union will become a reality. However, to join the club, the Maastricht criteria must be fulfilled, and this is not a trivial task for the countries (maybe except for Luxembourg). To enforce that Germany will fulfill the criteria, our government has so many wonderful options (raise taxes, sell stocks, revalue the gold reserves,...) that it is really hard to choose what to do. 

Therefore the German government requires a program for the following task: 
Two politicians each enter their proposal of what to do. The computer then outputs the longest common subsequence of words that occurs in both proposals. As you can see, this is a totally fair compromise (after all, a common sequence of words is something what both people have in mind). 

Your country needs this program, so your job is to write it for us.

Input

The input will contain several test cases. 
Each test case consists of two texts. Each text is given as a sequence of lower-case words, separated by whitespace, but with no punctuation. Words will be less than 30 characters long. Both texts will contain less than 100 words and will be terminated by a line containing a single '#'. 
Input is terminated by end of file.

Output

For each test case, print the longest common subsequence of words occuring in the two texts. If there is more than one such sequence, any one is acceptable. Separate the words by one blank. After the last word, output a newline character.

Sample Input

die einkommen der landwirte sind fuer die abgeordneten ein buch mit sieben siegeln um dem abzuhelfen muessen dringend alle subventionsgesetze verbessert werden # die steuern auf vermoegen und einkommen sollten nach meinung der abgeordneten nachdruecklich erhoben werden dazu muessen die kontrollbefugnisse der finanzbehoerden dringend verbessert werden #

Sample Output

die einkommen der abgeordneten muessen dringend verbessert werden
题意:给出两段文字,求出最长的公共单词串
思路:LCS问题,只须要开个二维来记录就行了

代码:

 

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;

char a[35][105],b[35][105],c[35][105];
int dp[105][105],mark[105][105],len1,len2,cnt;

void LCS()
{
    int i,j;
    memset(dp,0,sizeof(dp));
    memset(mark,0,sizeof(mark));
    for(i = 0;i<=len1;i++)
    mark[i][0] = 1;
    for(i = 0;i<=len2;i++)
    mark[0][i] = -1;
    for(i = 1; i<=len1; i++)
    {
        for(j = 1; j<=len2; j++)
        {
            if(!strcmp(a[i-1],b[j-1]))
            {
                dp[i][j] = dp[i-1][j-1]+1;
                mark[i][j] = 0;
            }
            else if(dp[i-1][j]>=dp[i][j-1])
            {
                dp[i][j] = dp[i-1][j];
                mark[i][j] = 1;
            }
            else
            {
                dp[i][j] = dp[i][j-1];
                mark[i][j] = -1;
            }
        }
    }
}

void PrintLCS(int i,int j)
{
    if(!i&&!j)
        return ;
    if(mark[i][j]==0)
    {
        PrintLCS(i-1,j-1);
        strcpy(c[cnt++],a[i-1]);
    }
    else if(mark[i][j]==1)
    {
        PrintLCS(i-1,j);
    }
    else
    {
        PrintLCS(i,j-1);
    }
}

int main()
{
    int i;
    while(~scanf("%s",a[0]))
    {
        len1 = 1;
        while(strcmp(a[len1-1],"#"))
            scanf("%s",a[len1++]);
        len1-=1;
        scanf("%s",b[0]);
        len2 = 1;
        while(strcmp(b[len2-1],"#"))
            scanf("%s",b[len2++]);
        LCS();
        cnt = 0;
        PrintLCS(len1,len2);
        printf("%s",c[0]);
        for(i = 1; i<cnt; i++)
        {
            printf(" %s",c[i]);
        }
        printf("\n");
    }

    return 0;}

相关文章
相关标签/搜索