resnet是何凯明大神在2015年提出的.而且得到了当年的ImageNet比赛的冠军. 残差网络具备里程碑的意义,为之后的网络设计提出了一个新的思路.
googlenet的思路是加宽每个layer,resnet的思路是加深layer.python
论文地址:https://arxiv.org/abs/1512.03385
论文里指出,随着网络深度的增长,模型表现并无更好,即所谓的网络退化.注意,不是过拟合,而是更深层的网络即使是train error也比浅层网络更高.
这说明,深层网络没有学习到合理的参数.git
而后,大神就开始开脑洞了,提出了残差结构,也叫shortcut connection:
之前学习的是F(x)(就是每一层的映射关系,输入x,输出F(x)),如今学的是F(x)-x,那为啥学习F(x)-x就更容易呢?
关于残差网络为什么有效的分析,参考:https://zhuanlan.zhihu.com/p/80226180
目前并无一个统一的结论,我比较倾向于模型集成这个说法.
github
残差网络就能够被看做是一系列路径集合组装而成的一个集成模型,其中不一样的路径包含了不一样的网络层子集。Andreas Veit等人展开了几组实验(Lesion study),在测试时,删去残差网络的部分网络层(即丢弃一部分路径)、或交换某些网络模块的顺序(改变网络的结构,丢弃一部分路径的同时引入新路径)。实验结果代表,网络的表现与正确网络路径数平滑相关(在路径变化时,网络表现没有剧烈变化),这代表残差网络展开后的路径具备必定的独立性和冗余性,使得残差网络表现得像一个集成模型(ensemble)网络
大神的思路咱跟不上,管他娘的为啥有效呢,深度学习里的玄学事情还少吗,这种问题留给科学家去研究吧. 我们用深度学习是来作产品的,实际提升生产力的.
咱们来看看resnet模型结构.
ide
按照论文里的34-layer这个来实现.
仔细看上面两个图可知,残差块用的卷积核为kernel_size=3.模型的conv3_1,conv4_1,conv5_1以前作了宽高减半的downsample.conv2_x是经过maxpool(stride=2)完成的下采样.其他的是经过conv2d(stride=2)完成的.函数
resnet采起了和vgg相似的堆叠结构,只不过vgg堆叠的是连续卷积核,resnet堆叠的是连续残差块.和vgg同样,越日后面的层,channel相较于前面的layer翻倍,h,w减半.学习
代码不是一蹴而就的,具体如何一步步实现能够去看github提交的history.测试
残差块的实现注意两点优化
class Residual(nn.Module): def __init__(self,in_channels,out_channels,stride=1): super(Residual,self).__init__() self.stride = stride self.conv1 = nn.Conv2d(in_channels,out_channels,kernel_size=3,stride=stride,padding=1) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels,out_channels,kernel_size=3,padding=1) self.bn2 = nn.BatchNorm2d(out_channels) # x卷积后shape发生改变,好比:x:[1,64,56,56] --> [1,128,28,28],则须要1x1卷积改变x if in_channels != out_channels: self.conv1x1 = nn.Conv2d(in_channels,out_channels,kernel_size=1,stride=stride) else: self.conv1x1 = None def forward(self,x): # print(x.shape) o1 = self.relu(self.bn1(self.conv1(x))) # print(o1.shape) o2 = self.bn2(self.conv2(o1)) # print(o2.shape) if self.conv1x1: x = self.conv1x1(x) out = self.relu(o2 + x) return out
在卷积层完成特征提取后, 每张图能够获得512个7x7的feature map.作全局平均池化后获得512个feature.再传入全链接层作特征的线性组合获得num_classes个类别.google
咱们来实现34-layer的resnet
class ResNet(nn.Module): def __init__(self,in_channels,num_classes): super(ResNet,self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels,64,kernel_size=7,stride=2,padding=3), nn.BatchNorm2d(64), nn.ReLU(inplace=True) ) self.conv2 = nn.Sequential( nn.MaxPool2d(kernel_size=3,stride=2,padding=1), Residual(64,64), Residual(64,64), Residual(64,64), ) self.conv3 = nn.Sequential( Residual(64,128,stride=2), Residual(128,128), Residual(128,128), Residual(128,128), Residual(128,128), ) self.conv4 = nn.Sequential( Residual(128,256,stride=2), Residual(256,256), Residual(256,256), Residual(256,256), Residual(256,256), Residual(256,256), ) self.conv5 = nn.Sequential( Residual(256,512,stride=2), Residual(512,512), Residual(512,512), ) # self.avg_pool = nn.AvgPool2d(kernel_size=7) self.avg_pool = nn.AdaptiveAvgPool2d(1) #代替AvgPool2d以适应不一样size的输入 self.fc = nn.Linear(512,num_classes) def forward(self,x): out = self.conv1(x) out = self.conv2(out) out = self.conv3(out) out = self.conv4(out) out = self.conv5(out) out = self.avg_pool(out) out = out.view((x.shape[0],-1)) out = self.fc(out) return out
接下来就仍是熟悉的套路
batch_size,num_workers=32,2 train_iter,test_iter = learntorch_utils.load_data(batch_size,num_workers,resize=48) print('load data done,batch_size:%d' % batch_size)
net = ResNet(1,10).cuda()
l = nn.CrossEntropyLoss()
opt = torch.optim.Adam(net.parameters(),lr=0.01)
num_epochs=5 def test(): acc_sum = 0 batch = 0 for X,y in test_iter: X,y = X.cuda(),y.cuda() y_hat = net(X) acc_sum += (y_hat.argmax(dim=1) == y).float().sum().item() batch += 1 test_acc = acc_sum/(batch*batch_size) # print('test acc:%f' % test_acc) return test_acc
def train(): for epoch in range(num_epochs): train_l_sum,batch,train_acc_sum=0,1,0 start = time.time() for X,y in train_iter: X,y = X.cuda(),y.cuda() #把tensor放到显存 y_hat = net(X) #前向传播 loss = l(y_hat,y) #计算loss,nn.CrossEntropyLoss中会有softmax的操做 opt.zero_grad()#梯度清空 loss.backward()#反向传播,求出梯度 opt.step()#根据梯度,更新参数 # 数据统计 train_l_sum += loss.item() train_acc_sum += (y_hat.argmax(dim=1) == y).float().sum().item() train_loss = train_l_sum/(batch*batch_size) train_acc = train_acc_sum/(batch*batch_size) if batch % 100 == 0: #每100个batch输出一次训练数据 print('epoch %d,batch %d,train_loss %.3f,train_acc:%.3f' % (epoch,batch,train_loss,train_acc)) if batch % 300 == 0: #每300个batch测试一次 test_acc = test() print('epoch %d,batch %d,test_acc:%.3f' % (epoch,batch,test_acc)) batch += 1 end = time.time() time_per_epoch = end - start print('epoch %d,batch_size %d,train_loss %f,time %f' % (epoch + 1,batch_size ,train_l_sum/(batch*batch_size),time_per_epoch)) test() train()
输出以下:
load data done,batch_size:32 epoch 0,batch 100,train_loss 0.082,train_acc:0.185 epoch 0,batch 200,train_loss 0.065,train_acc:0.297 epoch 0,batch 300,train_loss 0.053,train_acc:0.411 epoch 0,batch 300,test_acc:0.684 epoch 0,batch 400,train_loss 0.046,train_acc:0.487 epoch 0,batch 500,train_loss 0.041,train_acc:0.539 epoch 0,batch 600,train_loss 0.038,train_acc:0.578 epoch 0,batch 600,test_acc:0.763 epoch 0,batch 700,train_loss 0.035,train_acc:0.604 epoch 0,batch 800,train_loss 0.033,train_acc:0.628 epoch 0,batch 900,train_loss 0.031,train_acc:0.647 epoch 0,batch 900,test_acc:0.729 epoch 0,batch 1000,train_loss 0.030,train_acc:0.661 epoch 0,batch 1100,train_loss 0.029,train_acc:0.674 epoch 0,batch 1200,train_loss 0.028,train_acc:0.686 epoch 0,batch 1200,test_acc:0.802 epoch 0,batch 1300,train_loss 0.027,train_acc:0.696