Flow-Guided Feature Aggregation for Video Object Detection论文笔记

摘要 目前检测的准确率受物体视频中变化的影响,如运动模糊,镜头失焦等。现有工作是想要在框的级别上寻找时序信息,但这样的方法通常不能端到端训练。我们提出了flow-guided feature aggregation,一个用于视频物体检测的端到端学习框架。在特征级别上利用时序信息,通过相邻帧的运动路径提高每帧的特征,从而提高检测的准确率。  简介 特征提取网络提取出每帧的feature maps。为
相关文章
相关标签/搜索