7月7日,Flink 1.11 版本发布,与 1.10 版本相比,1.11 版本最为显著的一个改进是 Hive Integration 显著加强,也就是真正意义上实现了基于 Hive 的流批一体。php
本文用简单的本地示例来体验 Hive Streaming 的便利性并跟你们分享体验的过程以及个人心得,但愿对你们上手使用有所帮助。html
添加相关依赖web
<properties> <scala.bin.version>2.11</scala.bin.version> <flink.version>1.11.0</flink.version> <flink-shaded-hadoop.version>2.6.5-10.0</flink-shaded-hadoop.version> <hive.version>1.1.0</hive.version></properties>
<dependencies> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-scala_${scala.bin.version}</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-clients_${scala.bin.version}</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-common</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-api-scala-bridge_${scala.bin.version}</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-planner-blink_${scala.bin.version}</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-hive_${scala.bin.version}</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-sql-connector-kafka_${scala.bin.version}</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-json</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-shaded-hadoop-2-uber</artifactId> <version>${flink-shaded-hadoop.version}</version> </dependency> <dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-exec</artifactId> <version>${hive.version}</version> </dependency>
建立执行环境sql
val streamEnv = StreamExecutionEnvironment.getExecutionEnvironmentstreamEnv.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)streamEnv.setParallelism(3)
val tableEnvSettings = EnvironmentSettings.newInstance() .useBlinkPlanner() .inStreamingMode() .build()val tableEnv = StreamTableEnvironment.create(streamEnv, tableEnvSettings)tableEnv.getConfig.getConfiguration.set(ExecutionCheckpointingOptions.CHECKPOINTING_MODE, CheckpointingMode.EXACTLY_ONCE)tableEnv.getConfig.getConfiguration.set(ExecutionCheckpointingOptions.CHECKPOINTING_INTERVAL, Duration.ofSeconds(20))
注册 HiveCatalogapache
val catalogName = "my_catalog"val catalog = new HiveCatalog( catalogName, // catalog name "default", // default database "/Users/lmagic/develop", // Hive config (hive-site.xml) directory "1.1.0" // Hive version)tableEnv.registerCatalog(catalogName, catalog)tableEnv.useCatalog(catalogName)
建立 Kafka 流表json
tableEnv.executeSql("CREATE DATABASE IF NOT EXISTS stream_tmp")tableEnv.executeSql("DROP TABLE IF EXISTS stream_tmp.analytics_access_log_kafka")
tableEnv.executeSql( """ |CREATE TABLE stream_tmp.analytics_access_log_kafka ( | ts BIGINT, | userId BIGINT, | eventType STRING, | fromType STRING, | columnType STRING, | siteId BIGINT, | grouponId BIGINT, | partnerId BIGINT, | merchandiseId BIGINT, | procTime AS PROCTIME(), | eventTime AS TO_TIMESTAMP(FROM_UNIXTIME(ts / 1000,'yyyy-MM-dd HH:mm:ss')), | WATERMARK FOR eventTime AS eventTime - INTERVAL '15' SECOND |) WITH ( | 'connector' = 'kafka', | 'topic' = 'ods_analytics_access_log', | 'properties.bootstrap.servers' = 'kafka110:9092,kafka111:9092,kafka112:9092' | 'properties.group.id' = 'flink_hive_integration_exp_1', | 'scan.startup.mode' = 'latest-offset', | 'format' = 'json', | 'json.fail-on-missing-field' = 'false', | 'json.ignore-parse-errors' = 'true' |) """.stripMargin)
hive> DESCRIBE FORMATTED stream_tmp.analytics_access_log_kafka;OK# col_name data_type comment
# Detailed Table InformationDatabase: stream_tmpOwner: nullCreateTime: Wed Jul 15 18:25:09 CST 2020LastAccessTime: UNKNOWNProtect Mode: NoneRetention: 0Location: hdfs://sht-bdmq-cls/user/hive/warehouse/stream_tmp.db/analytics_access_log_kafkaTable Type: MANAGED_TABLETable Parameters: flink.connector kafka flink.format json flink.json.fail-on-missing-field false flink.json.ignore-parse-errors true flink.properties.bootstrap.servers kafka110:9092,kafka111:9092,kafka112:9092 flink.properties.group.id flink_hive_integration_exp_1 flink.scan.startup.mode latest-offset flink.schema.0.data-type BIGINT flink.schema.0.name ts flink.schema.1.data-type BIGINT flink.schema.1.name userId flink.schema.10.data-type TIMESTAMP(3) flink.schema.10.expr TO_TIMESTAMP(FROM_UNIXTIME(`ts` / 1000, 'yyyy-MM-dd HH:mm:ss')) flink.schema.10.name eventTime flink.schema.2.data-type VARCHAR(2147483647) flink.schema.2.name eventType # 略...... flink.schema.9.data-type TIMESTAMP(3) NOT NULL flink.schema.9.expr PROCTIME() flink.schema.9.name procTime flink.schema.watermark.0.rowtime eventTime flink.schema.watermark.0.strategy.data-type TIMESTAMP(3) flink.schema.watermark.0.strategy.expr `eventTime` - INTERVAL '15' SECOND flink.topic ods_analytics_access_log is_generic true transient_lastDdlTime 1594808709
# Storage InformationSerDe Library: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDeInputFormat: org.apache.hadoop.mapred.TextInputFormatOutputFormat: org.apache.hadoop.hive.ql.io.IgnoreKeyTextOutputFormatCompressed: NoNum Buckets: -1Bucket Columns: []Sort Columns: []Storage Desc Params: serialization.format 1Time taken: 1.797 seconds, Fetched: 61 row(s)
建立 Hive 表bootstrap
tableEnv.getConfig.setSqlDialect(SqlDialect.HIVE)
tableEnv.executeSql("CREATE DATABASE IF NOT EXISTS hive_tmp")tableEnv.executeSql("DROP TABLE IF EXISTS hive_tmp.analytics_access_log_hive")
tableEnv.executeSql( """ |CREATE TABLE hive_tmp.analytics_access_log_hive ( | ts BIGINT, | user_id BIGINT, | event_type STRING, | from_type STRING, | column_type STRING, | site_id BIGINT, | groupon_id BIGINT, | partner_id BIGINT, | merchandise_id BIGINT |) PARTITIONED BY ( | ts_date STRING, | ts_hour STRING, | ts_minute STRING |) STORED AS PARQUET |TBLPROPERTIES ( | 'sink.partition-commit.trigger' = 'partition-time', | 'sink.partition-commit.delay' = '1 min', | 'sink.partition-commit.policy.kind' = 'metastore,success-file', | 'partition.time-extractor.timestamp-pattern' = '$ts_date $ts_hour:$ts_minute:00' |) """.stripMargin)
-
sink.partition-commit.trigger :触发分区提交的时间特征。默认为 processing-time,即处理时间,很显然在有延迟的状况下,可能会形成数据分区错乱。因此这里使用 partition-time,即按照分区时间戳(即分区内数据对应的事件时间)来提交。 -
partition.time-extractor.timestamp-pattern :分区时间戳的抽取格式。须要写成 yyyy-MM-dd HH:mm:ss 的形式,并用 Hive 表中相应的分区字段作占位符替换。显然,Hive 表的分区字段值来自流表中定义好的事件时间,后面会看到。 -
sink.partition-commit.delay :触发分区提交的延迟。在时间特征设为 partition-time 的状况下,当水印时间戳大于分区建立时间加上此延迟时,分区才会真正提交。此值最好与分区粒度相同,例如若 Hive 表按1小时分区,此参数可设为 1 h,若按 10 分钟分区,可设为 10 min。 -
sink.partition-commit.policy.kind :分区提交策略,能够理解为使分区对下游可见的附加操做。 metastore 表示更新 Hive Metastore 中的表元数据, success-file 则表示在分区内建立 _SUCCESS 标记文件。
https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/table/connectors/filesystem.html#streaming-sinkapi
流式写入 Hive安全
tableEnv.getConfig.setSqlDialect(SqlDialect.DEFAULT)tableEnv.executeSql( """ |INSERT INTO hive_tmp.analytics_access_log_hive |SELECT | ts,userId,eventType,fromType,columnType,siteId,grouponId,partnerId,merchandiseId, | DATE_FORMAT(eventTime,'yyyy-MM-dd'), | DATE_FORMAT(eventTime,'HH'), | DATE_FORMAT(eventTime,'mm') |FROM stream_tmp.analytics_access_log_kafka |WHERE merchandiseId > 0 """.stripMargin)
hive> SELECT from_unixtime(min(cast(ts / 1000 AS BIGINT))),from_unixtime(max(cast(ts / 1000 AS BIGINT))) > FROM hive_tmp.analytics_access_log_hive > WHERE ts_date = '2020-07-15' AND ts_hour = '23' AND ts_minute = '23';OK2020-07-15 23:23:00 2020-07-15 23:23:59Time taken: 1.115 seconds, Fetched: 1 row(s)
流式读取 Hive微信
tableEnv.getConfig.getConfiguration.setBoolean(TableConfigOptions.TABLE_DYNAMIC_TABLE_OPTIONS_ENABLED, true)
val result = tableEnv.sqlQuery( """ |SELECT merchandise_id,count(1) AS pv |FROM hive_tmp.analytics_access_log_hive |/*+ OPTIONS( | 'streaming-source.enable' = 'true', | 'streaming-source.monitor-interval' = '1 min', | 'streaming-source.consume-start-offset' = '2020-07-15 23:30:00' |) */ |WHERE event_type = 'shtOpenGoodsDetail' |AND ts_date >= '2020-07-15' |GROUP BY merchandise_id |ORDER BY pv DESC LIMIT 10 """.stripMargin)
result.toRetractStream[Row].print().setParallelism(1)streamEnv.execute()
-
streaming-source.enable:设为 true,表示该 Hive 表能够做为 Source。 -
streaming-source.monitor-interval:感知 Hive 表新增数据的周期,以上设为 1 分钟。对于分区表而言,则是监控新分区的生成,以增量读取数据。 -
streaming-source.consume-start-offset:开始消费的时间戳,一样须要写成 yyyy-MM-dd HH:mm:ss 的形式。
https://links.jianshu.com/go?to=https%3A%2F%2Fci.apache.org%2Fprojects%2Fflink%2Fflink-docs-release-1.11%2Fdev%2Ftable%2Fhive%2Fhive_streaming.html%23streaming-reading
The End
一个实践机会 
Apache Flink 极客挑战赛

本文分享自微信公众号 - Flink 中文社区(gh_5efd76d10a8d)。
若有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一块儿分享。