iOS 底层探索篇 —— 类的结构分析

前言c++

连续指针内存偏移

int array[] = {1,2,4};
int *b = array;
NSLog(@"%p-%p-%p-%p",&array,&array[0],&array[1],&array[2]);
NSLog(@"%p-%p-%p",b,b+1,b+2);
        
for (int i = 0; i < 3; i++) {
      int value = *(b+i);
     NSLog(@"value-%d",value);
}

2019-12-21 21:06:11.914923+0800 XDTest[2663:291951] 0x7ffeefbff5bc-0x7ffeefbff5bc-0x7ffeefbff5c0-0x7ffeefbff5c4
2019-12-21 21:06:11.915605+0800 XDTest[2663:291951] 0x7ffeefbff5bc-0x7ffeefbff5c0-0x7ffeefbff5c4
2019-12-21 21:06:11.915673+0800 XDTest[2663:291951] value-1
2019-12-21 21:06:11.915729+0800 XDTest[2663:291951] value-2
2019-12-21 21:06:11.915756+0800 XDTest[2663:291951] value-4
复制代码
  • 指针b的地址就是array数组的首地址。
  • 经过指针偏移能够找到接下来的连续内存地址。

类结构分析

1. 万物皆对象

typedef struct objc_class *Class;
struct objc_class : objc_object{};
复制代码
  • 从源码中咱们就能够知道类Class的本质就是objc_class
  • objc_class继承自objc_object,验证万物皆对象。

Q1: objc_classNSObject的关系?swift

NSObject就是一个类,其本质是objc_class数组

Q2: objc_objectNSObject的关系?缓存

NSObjectOC的类型,objc_objectc的类型。 NSObject是对objc_object的封装。bash

2. 类结构

struct objc_class : objc_object {
    // Class ISA;           //8
    Class superclass;       //8
    cache_t cache;          //16        // formerly cache pointer and vtable
    class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags

    class_rw_t *data() { 
        return bits.data();
    }
    ...省略其余的信息...
};
复制代码

3. 类结构成员分析

3.1 Class ISAapp

一个被注释的成员,表明是从父类继承过来的,所占用8字节。less

struct objc_object {
private:
    isa_t isa;
  ...省略其余的信息...
};
复制代码

3.2 Class superclasside

指向父类的指针,Class自己就是一个指针,所占用8字节。函数

3.3 cache_t cachepost

顾名思义,是存储缓存的对象,所占用16字节

truct cache_t {
    struct bucket_t *_buckets;  //指针占用8字节
    mask_t _mask;               // int32  占用4字节
    mask_t _occupied;           //占用4字节

 ...省略其余的信息...
};
复制代码

3.4 class_data_bits_t bits

一个结构体,咱们发现类的一些相关的信息在前面三个成员里面都看不到,有此咱们能够分析出来,类的相关属性,成员变量,方法都在这个结构体里面。

4. class_data_bits_t深刻

经过对类的结构体的分析isasuperclasscache这些属性里面是看不到与咱们自定义的属性等等有关系的,所以咱们对准bits来探索。

  1. 咱们在类的结构体也看到了下面的这行代码
class_rw_t *data() { 
        return bits.data();
    }
复制代码

验证了类的相关信息都存在bits里面,而且经过bits.data()函数能够直接获取到结构体class_rw_t的信息。

  1. 观察class_rw_t结构体
struct class_rw_t {
    // Be warned that Symbolication knows the layout of this structure.
    uint32_t flags;
    uint32_t version;

    const class_ro_t *ro;

    method_array_t methods;
    property_array_t properties;
    protocol_array_t protocols;

...省略其余的信息...
};
复制代码

咱们彷佛看到了咱们熟悉的属性,方法,代理等相关的数据类型。 可是这里要注意了,咱们类的属性,方法并无存在method_array_tproperty_array_t这些类型的属性里面(它是什么,后面章节会介绍)。 而是存放在了class_ro_t这个结构体里面,咱们看到定义的是const,能够说明这一块会在编译时候就肯定好了,后面取出来使用是不能够更改的。

  1. 观察class_ro_t结构体
struct class_ro_t {
    uint32_t flags;
    uint32_t instanceStart;
    uint32_t instanceSize;
#ifdef __LP64__
    uint32_t reserved;
#endif

    const uint8_t * ivarLayout;
    
    const char * name;
    method_list_t * baseMethodList;
    protocol_list_t * baseProtocols;
    const ivar_list_t * ivars;

    const uint8_t * weakIvarLayout;
    property_list_t *baseProperties;
   ...省略其余的信息...
复制代码
  • 成员变量存放const ivar_list_t * ivars
  • 属性存放property_list_t *baseProperties
  • 方法存放method_list_t * baseMethodList

5. 属性-方法的归属探索

5.1 准备条件

定义成员变量、属性、对象方法、类方法。

@interface XDPerson : NSObject
{
    NSString *otherName;
}
@property (nonatomic, copy) NSString *nickName;

- (void)sayHello;

+ (void)sayHappy;
@end
复制代码

5.2 lldb调试

在文章的开始已经了解了在连续内存段里面能够经过指针偏移找到对应的内存段。

  1. 查看类XDPerson的内存信息
(lldb) x/4gx XDPerson.class
0x100001318: 0x001d8001000012f1 0x0000000100aff140
0x100001328: 0x000000010203ce00 0x0000000200000003
复制代码
  1. 咱们知道信息在objc_class结构体的bits属性里面,经过内存地址偏移来找到bits的内存地址,咱们直接去找0x100001318+32个字节=0x100001338
(lldb) p (class_data_bits_t *)0x100001338
(class_data_bits_t *) $1 = 0x0000000100001338
复制代码
  1. 寻找class_rw_t经过bits.data()
(lldb) p $1->data()
(class_rw_t *) $2 = 0x000000010203cd50
复制代码
  1. 查看class_rw_t内存数据信息
(lldb) p *$2
(class_rw_t) $3 = {
  flags = 2148139008
  version = 0
  ro = 0x00000001000011f0
  methods = {
    list_array_tt<method_t, method_list_t> = {
       = {
        list = 0x0000000100001128
        arrayAndFlag = 4294971688
      }
    }
  }
  properties = {
    list_array_tt<property_t, property_list_t> = {
       = {
        list = 0x00000001000011d8
        arrayAndFlag = 4294971864
      }
    }
  }
  protocols = {
    list_array_tt<unsigned long, protocol_list_t> = {
       = {
        list = 0x0000000000000000
        arrayAndFlag = 0
      }
    }
  }
  firstSubclass = nil
  nextSiblingClass = NSDate
  demangledName = 0x0000000000000000 <no value available>
}
复制代码
  1. 查看目标ro
(lldb) p $3.ro
(const class_ro_t *) $4 = 0x00000001000011f0
复制代码
  1. 查看class_ro_t的内存数据信息
(lldb) p *$4
(const class_ro_t) $5 = {
  flags = 388
  instanceStart = 8
  instanceSize = 24
  reserved = 0
  ivarLayout = 0x0000000100000f80 "\x02"
  name = 0x0000000100000f77 "XDPerson"
  baseMethodList = 0x0000000100001128
  baseProtocols = 0x0000000000000000
  ivars = 0x0000000100001190
  weakIvarLayout = 0x0000000000000000 <no value available>
  baseProperties = 0x00000001000011d8
  _swiftMetadataInitializer_NEVER_USE = {}
}
复制代码
  1. 查看baseProperties
(lldb) p $5.baseProperties
(property_list_t *const) $6 = 0x00000001000011d8
(lldb) p *$6
(property_list_t) $7 = {
  entsize_list_tt<property_t, property_list_t, 0> = {
    entsizeAndFlags = 16
    count = 1
    first = (name = "nickName", attributes = "T@"NSString",C,N,V_nickName")
  }
}
复制代码

有且仅有一个元素 nickName和咱们定义的相同。

  1. 查看ivars
(lldb) p $5.ivars
(const ivar_list_t *const) $8 = 0x0000000100001190
(lldb) p *$8
(const ivar_list_t) $9 = {
  entsize_list_tt<ivar_t, ivar_list_t, 0> = {
    entsizeAndFlags = 32
    count = 2
    first = {
      offset = 0x00000001000012e8
      name = 0x0000000100000f20 "otherName"
      type = 0x0000000100000fa7 "@"NSString""
      alignment_raw = 3
      size = 8
    }
  }
}
(lldb) p $9.get(0)
(ivar_t) $10 = {
  offset = 0x00000001000012e8
  name = 0x0000000100000f20 "otherName"
  type = 0x0000000100000fa7 "@"NSString""
  alignment_raw = 3
  size = 8
}
(lldb) p $9.get(1)
(ivar_t) $11 = {
  offset = 0x00000001000012e0
  name = 0x0000000100000f2a "_nickName"
  type = 0x0000000100000fa7 "@"NSString""
  alignment_raw = 3
  size = 8
}
复制代码

有两个元素,一个是成员变量otherName,另外一个是编译生成的成员变量_nickName

  1. 查看baseMothedList
(lldb) p $5.baseMethodList
(method_list_t *const) $12 = 0x0000000100001128
(lldb) p *$12
(method_list_t) $13 = {
  entsize_list_tt<method_t, method_list_t, 3> = {
    entsizeAndFlags = 26
    count = 4
    first = {
      name = "sayHello"
      types = 0x0000000100000f8c "v16@0:8"
      imp = 0x0000000100000d70 (XDTest`-[XDPerson sayHello] at XDPerson.m:11)
    }
  }
}
(lldb) p $13.get(0)
(method_t) $14 = {
  name = "sayHello"
  types = 0x0000000100000f8c "v16@0:8"
  imp = 0x0000000100000d70 (XDTest`-[XDPerson sayHello] at XDPerson.m:11)
}
(lldb) p $13.get(1)
(method_t) $15 = {
  name = "nickName"
  types = 0x0000000100000f94 "@16@0:8"
  imp = 0x0000000100000d90 (XDTest`-[XDPerson nickName] at XDPerson.h:16)
}
(lldb) p $13.get(2)
(method_t) $16 = {
  name = "setNickName:"
  types = 0x0000000100000f9c "v24@0:8@16"
  imp = 0x0000000100000dc0 (XDTest`-[XDPerson setNickName:] at XDPerson.h:16)
}
(lldb) p $13.get(3)
(method_t) $17 = {
  name = ".cxx_destruct"
  types = 0x0000000100000f8c "v16@0:8"
  imp = 0x0000000100000e00 (XDTest`-[XDPerson .cxx_destruct] at XDPerson.m:10)
}
复制代码
  • sayHello定义的对象方法。
  • nickName底层生成的getter方法。
  • setNickName:底层生成的setter方法。
  • .cxx_destruct系统c++的析构函数。

这里也验证了属性在底层生成了 ivar+getter+setter

  1. sayHappy类方法去哪了?

经过iOS 底层探索篇 —— isa的初始化&指向分析这篇文章的分析,咱们能够了解到类在元类那里也至关因而一个对象,那类的类方法会不会在元类那里也相似一个对象方法给存起来了?

...省略部分调试 去查找元类的相关信息...
(lldb) p $25.baseMethodList
(method_list_t *const) $26 = 0x00000001000010c0
(lldb) p *$26
(method_list_t) $27 = {
  entsize_list_tt<method_t, method_list_t, 3> = {
    entsizeAndFlags = 26
    count = 1
    first = {
    name = "sayHappy"
    types = 0x0000000100000f8c "v16@0:8"
    imp = 0x0000000100000d80 (XDTest`+[XDPerson sayHappy] at XDPerson.m:15)
    }
  }
}
复制代码

sayHappy类方法在元类里面找到了。

验证了咱们的成员遍历,属性,方法都在class_ro_t的这个机构体里面找到了。

其实笔者也去找了一下协议,可是很惋惜没有找到,后面会在单独研究协议,原谅能力有限,不足之处还请指出。

其余结构体分析

在上面的分析中咱们看到了property_tivar_tmethod_t这三个结构体。接下来咱们作一下简单的分析。

1. property_t

struct property_t {
    const char *name;
    const char *attributes;
};
复制代码
  • name属性的名字;
  • attributes描述字段;

2. ivar_t

struct ivar_t {
#if __x86_64__
    // *offset was originally 64-bit on some x86_64 platforms.
    // We read and write only 32 bits of it.
    // Some metadata provides all 64 bits. This is harmless for unsigned 
    // little-endian values.
    // Some code uses all 64 bits. class_addIvar() over-allocates the 
    // offset for their benefit.
#endif
    int32_t *offset;
    const char *name;
    const char *type;
    // alignment is sometimes -1; use alignment() instead
    uint32_t alignment_raw;
    uint32_t size;

    uint32_t alignment() const {
        if (alignment_raw == ~(uint32_t)0) return 1U << WORD_SHIFT;
        return 1 << alignment_raw;
    }
};
复制代码
  • offset偏移内存地址;
  • name名字;
  • type类型;
  • alignment_raw对齐信息;
  • size所占字节;

3. method_t

struct method_t {
    SEL name;
    const char *types;
    MethodListIMP imp;  //using MethodListIMP = IMP;

    struct SortBySELAddress :
        public std::binary_function<const method_t&,
                                    const method_t&, bool>
    {
        bool operator() (const method_t& lhs,
                         const method_t& rhs)
        { return lhs.name < rhs.name; }
    };
};
复制代码
  • name方法名;
  • types方法前面;
  • imp方法实现;
相关文章
相关标签/搜索