机器学习过程中的数据预处理和特征选择方法

1、数据清洗 数据清洗(data cleaning)是在机器学习过程中一个不可缺少的环节,其数据的清洗结果直接关系到模型效果以及最终的结论。在实际的工作中,数据清洗通常占开发过程的50%-80%左右的时间。 数据清洗过程: (1)数据预处理 在数据预处理过程主要考虑两个方面,如下: 选择数据处理工具:关系型数据库或者Python 查看数据的元数据以及数据特征:一是查看元数据,包括字段解释、数据来源
相关文章
相关标签/搜索