★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:为敢(WeiGanTechnologies)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:http://www.javashuo.com/article/p-uhfqhxhp-ha.html
➤若是连接不是山青咏芝的博客园地址,则多是爬取做者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持做者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★html
Given an array of integers, return the maximum sum for a non-empty subarray (contiguous elements) with at most one element deletion. In other words, you want to choose a subarray and optionally delete one element from it so that there is still at least one element left and the sum of the remaining elements is maximum possible.git
Note that the subarray needs to be non-empty after deleting one element.github
Example 1:数组
Input: arr = [1,-2,0,3] Output: 4 Explanation: Because we can choose [1, -2, 0, 3] and drop -2, thus the subarray [1, 0, 3] becomes the maximum value.
Example 2:微信
Input: arr = [1,-2,-2,3] Output: 3 Explanation: We just choose [3] and it's the maximum sum.
Example 3:ide
Input: arr = [-1,-1,-1,-1] Output: -1 Explanation: The final subarray needs to be non-empty. You can't choose [-1] and delete -1 from it, then get an empty subarray to make the sum equals to 0.
Constraints:spa
1 <= arr.length <= 10^5
-10^4 <= arr[i] <= 10^4
给你一个整数数组,返回它的某个 非空 子数组(连续元素)在执行一次可选的删除操做后,所能获得的最大元素总和。code
换句话说,你能够从原数组中选出一个子数组,并能够决定要不要从中删除一个元素(只能删一次哦),(删除后)子数组中至少应当有一个元素,而后该子数组(剩下)的元素总和是全部子数组之中最大的。htm
注意,删除一个元素后,子数组 不能为空。blog
请看示例:
示例 1:
输入:arr = [1,-2,0,3] 输出:4 解释:咱们能够选出 [1, -2, 0, 3],而后删掉 -2,这样获得 [1, 0, 3],和最大。
示例 2:
输入:arr = [1,-2,-2,3] 输出:3 解释:咱们直接选出 [3],这就是最大和。
示例 3:
输入:arr = [-1,-1,-1,-1] 输出:-1 解释:最后获得的子数组不能为空,因此咱们不能选择 [-1] 并从中删去 -1 来获得 0。 咱们应该直接选择 [-1],或者选择 [-1, -1] 再从中删去一个 -1。
提示:
1 <= arr.length <= 10^5
-10^4 <= arr[i] <= 10^4
Runtime: 236 ms
1 class Solution { 2 func maximumSum(_ arr: [Int]) -> Int { 3 let n:Int = arr.count 4 if n == 1 5 { 6 return arr.first! 7 } 8 var leftMaxSum:[Int] = [Int](repeating:0,count:n) 9 for i in 1..<n 10 { 11 leftMaxSum[i] = max(arr[i - 1], leftMaxSum[i - 1] + arr[i - 1]) 12 } 13 var rightMaxSum:[Int] = [Int](repeating:0,count:n) 14 for i in stride(from:n - 2,through:0,by:-1) 15 { 16 rightMaxSum[i] = max(arr[i + 1], rightMaxSum[i + 1] + arr[i + 1]) 17 } 18 var maxNum:Int = max(leftMaxSum[n - 1], rightMaxSum[0]) 19 for i in 1..<(n - 1) 20 { 21 maxNum = max(maxNum, leftMaxSum[i]) 22 maxNum = max(maxNum, rightMaxSum[i]) 23 maxNum = max(maxNum, leftMaxSum[i] + rightMaxSum[i]) 24 } 25 return maxNum 26 } 27 }
244ms
1 class Solution { 2 func maximumSum(_ arr: [Int]) -> Int { 3 if arr.isEmpty { return 0 } 4 if arr.count == 1 { return arr[0] } 5 var forward = Array(repeating: 0, count: arr.count) 6 var backward = Array(repeating: 0, count: arr.count) 7 var currMax = arr[0], overMax = arr[0], answer = 0 8 forward[0] = arr[0] 9 for i in 1..<arr.count { 10 currMax = max(arr[i], currMax + arr[i]) 11 overMax = max(overMax, currMax) 12 forward[i] = currMax 13 } 14 currMax = arr[arr.count-1] 15 overMax = arr[arr.count-1] 16 backward[arr.count-1] = arr[arr.count-1] 17 for i in (0..<arr.count-1).reversed() { 18 currMax = max(arr[i], currMax + arr[i]) 19 overMax = max(overMax, currMax) 20 backward[i] = currMax 21 } 22 answer = overMax 23 for i in 1..<arr.count-1 { 24 answer = max(answer, forward[i-1]+backward[i+1]) 25 } 26 return answer 27 } 28 }
248ms
1 class Solution { 2 func maximumSum(_ arr: [Int]) -> Int { 3 4 if arr.count == 0 { 5 return -1 6 } 7 if arr.count == 1 { 8 return arr[0] 9 } 10 11 var dp = [Int](repeating: 0, count: arr.count) 12 dp[0] = arr[0] 13 var max1 = dp[0] 14 for i in 1..<arr.count { 15 if dp[i-1] >= 0 { 16 dp[i] = arr[i] + dp[i-1] 17 } else { 18 dp[i] = arr[i] 19 } 20 max1 = max(max1, dp[i]) 21 } 22 23 var dp2 = [Int](repeating: 0, count: arr.count) 24 dp2[arr.count-1] = arr[arr.count-1] 25 var max2 = dp2[arr.count-1] 26 for i in stride(from: arr.count-2, to: -1, by: -1) { 27 if dp2[i+1] > 0 { 28 dp2[i] = arr[i] + dp2[i+1] 29 } else { 30 dp2[i] = arr[i] 31 } 32 max2 = max(dp2[i], max2) 33 } 34 var max3 = max(max1, max2) 35 36 for i in 1..<arr.count-1 { 37 max3 = max(dp[i-1]+dp2[i+1], max3) 38 } 39 return max3 40 } 41 }