TensorFlow实战——CNN

全连接神经网络存在以下三个问题: 参数太多(每个节点都要和下一层的所有节点连接) 容易过拟合 不能很好的抽取局部的特征(如一张有两只猫的图片,它偏向于抽取整张图的特征,而不是图中部分区域的特征) 鉴于以上的问题,我们介绍卷积神经网络(CNN)。先介绍CNN中的池化层和卷积层。我们根据下图来讲解: 过滤器 池化层和卷积层都会有过滤器,过滤器会有个窗口(如上图中,黄色的框框),它会把上一层的数据过滤到
相关文章
相关标签/搜索