字典树又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计,排序和保存大量的字符串(但不只限于字符串),因此常常被搜索引擎系统用于文本词频统计。它的优势是:利用字符串的公共前缀来节约存储空间,最大限度地减小无谓的字符串比较,查询效率比哈希表高。 java
字典树与字典很类似,当你要查一个单词是否是在字典树中,首先看单词的第一个字母是否是在字典的第一层,若是不在,说明字典树里没有该单词,若是在就在该字母的孩子节点里找是否是有单词的第二个字母,没有说明没有该单词,有的话用一样的方法继续查找.字典树不只能够用来储存字母,也能够储存数字等其它数据。node
//字典树的java实现 public class Trie { private TrieNode root; public Trie() { root = new TrieNode(); root.wordEnd = false; } public void insert(String word) { TrieNode node = root; for (int i = 0; i < word.length(); i++) { Character c = new Character(word.charAt(i)); if (!node.childdren.containsKey(c)) { node.childdren.put(c, new TrieNode()); } node = node.childdren.get(c); } node.wordEnd = true; } public boolean search(String word) { TrieNode node = root; boolean found = true; for (int i = 0; i < word.length(); i++) { Character c = new Character(word.charAt(i)); if (!node.childdren.containsKey(c)) { return false; } node = node.childdren.get(c); } return found && node.wordEnd; } public boolean startsWith(String prefix) { TrieNode node = root; boolean found = true; for (int i = 0; i < prefix.length(); i++) { Character c = new Character(prefix.charAt(i)); if (!node.childdren.containsKey(c)) { return false; } node = node.childdren.get(c); } return found; } } public class TrieNode { Map<Character, TrieNode> childdren; boolean wordEnd; public TrieNode() { childdren = new HashMap<Character, TrieNode>(); wordEnd = false; } }