转自:https://www.jianshu.com/p/73686691cf13python
下面是几种常写的方式app
normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
transformList = []
transformList.append(transforms.RandomResizedCrop(transCrop))
transformList.append(transforms.RandomHorizontalFlip())
transformList.append(transforms.ToTensor())
transformList.append(normalize)
transformSequence = transforms.Compose(transformList)
train_augmentation = torchvision.transforms.Compose([torchvision.transforms.Resize(256),
torchvision.transforms.RandomCrop(224),
torchvision.transofrms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
torch vision.Normalize([0.485, 0.456, -.406], [0.229, 0.224, 0.225])
])
须要主要的是:dom
resize至关于对原来的图像进行压缩,大体的形状是不发生变化的,也就是说能够看到图片的样子
Crop是对图片进行随机的剪切,切出来的多是整个图片的一部分,其中RandomCrop的操做更经常使用
RandomResizedCrop类也是比较经常使用, 总的来说就是先作crop,再resize到指定尺寸oop
这两种操做以后,一张图变成五张,一张图变成十张,那么在训练或者测试的时候怎么避免和标签混淆呢
思路是,这多个图拥有相同的标签,假如是分类任务,就能够使用交叉熵进行,而后求10张图的平均测试
transform = Compose([
TenCrop(size), # this is a list of PIL Images
Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
])
#In your test loop you can do the following:
input, target = batch # input is a 5d tensor, target is 2d
bs, ncrops, c, h, w = input.size()
result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops