优化循环神经网络长期依赖问题 LSTM GRU 截断梯度 渗透单元

长期依赖问题 长期依赖问题在于经过许多阶段梯度传播后,梯度倾向于消失(多数)或者爆炸(少数)。循环神经网络涉及到多次相同函数的组合,这些组合导致极短的非线性。 ESN回声状态网络: 。。。 跳跃连接: 从过去某个层输出,直接链接到未来层。引入d延时循环链接保证单元能够被前d个单元影响,减轻梯度爆炸和消失问题。导数的指数减小速度与T/d有关而不是T有关。如ResNet: 渗透单元: 设置自连接单元从
相关文章
相关标签/搜索