两个计算股票技术性指标的包| Python 主题月

安装命令以下:html

pip install stockstats
复制代码
conda install -c conda-forge ta-lib

复制代码

能够在mbalib 网站上查询各个指标的含义。例如: wiki.mbalib.com/wiki/三重指数平滑…bash

缩写 描述
K KDJ中的K值
D KDJ中的D值
J KDJ中的J值
MACD 异同移动平均线
MOM 动量线
BIAS 乖离率
CMO 钱德动量摆动指标
TRIX 三重指数平滑平均线
OBV 能量潮
ROC 变更率指标
AMA 移动平均平行线差指标
VR 成交量变异率
PSY 心理线指标
Force Index 强力指数指标
DPO 区间震荡线
VHF 十字过滤线指标
RVI 相对活力指数

实现

先导入几个包,除了talib、numpy和pandas之外还有stockstats、pandas_talibmarkdown

import pandas as pd
import numpy as np
import talib
import stockstats
import pandas_talib
''' 这里虽然没有定义df这个变量,但这很明显就是dateframe格式的某只股票基础数据 包括开盘价、收盘价、最高价、最低价和成交量 建议用tushare来获取数据(固然仅限日数据) '''
stockStat = stockstats.StockDataFrame.retype(df)
close = df.close
highPrice = df.high
lowPrice = df.low
volume = df.volume

复制代码

而后把一些人家库已经实现好的指标放出来app

df.rename(columns={'close': 'Close', 'volume': 'Volume'}, inplace=True)

sig_k , sig_d  = talib.STOCH(np.array(highPrice), np.array(lowPrice),
np.array(close), fastk_period=9,slowk_period=3,
slowk_matype=0, slowd_period=3, slowd_matype=0)
sig_j = sig_k * 3 - sig_d  * 2
sig = pd.concat([sig_k, sig_d, sig_j], axis=1, keys=['K', 'D', 'J'])
sig['MACD'], MACDsignal, MACDhist = talib.MACD(np.array(close), fastperiod=6,
slowperiod=12, signalperiod=9)
sig['MOM'] = talib.MOM(np.array(close), timeperiod=5)
sig['CMO'] = talib.CMO(close, timeperiod=10)
sig['TRIX'] = talib.TRIX(close, timeperiod=14)
sig['OBV'] = talib.OBV(close, volume)
sig['ROC'] = talib.ROC(close, timeperiod=10)
sig['VR'] = stockStat['vr']
sig['Force_Index'] = pandas_talib.FORCE(df, 12)['Force_12']
复制代码

BIAS

def BIAS(close, timeperiod=20):
    if isinstance(close,np.ndarray):
        pass
    else:
        close = np.array(close)
        MA = talib.MA(close,timeperiod=timeperiod)
        return (close-MA)/MA

复制代码

AMA

def AMA(stockStat):
    return talib.MA(stockStat['dma'],  timeperiod=10)
复制代码

PSY

def PSY(priceData, period):
    difference = priceData[1:] - priceData[:-1]
    difference = np.append(0, difference)
    difference_dir = np.where(difference > 0, 1, 0)
    psy = np.zeros((len(priceData),))
    psy[:period] *= np.nan
    for i in range(period, len(priceData)):
    psy[i] = (difference_dir[i-period+1:i+1].sum()) / period
    return psy*100
复制代码

DPO

def DPO(close):  
    p = talib.MA(close, timeperiod=11)  
    p.shift()  
    return close-p
复制代码

VHF

def VHF(close):
    LCP = talib.MIN(close, timeperiod=28)
    HCP = talib.MAX(close, timeperiod=28)
    NUM = HCP - LCP
    pre = close.copy()
    pre = pre.shift()
    DEN = abs(close-close.shift())
    DEN = talib.MA(DEN, timeperiod=28)*28
    return NUM.div(DEN)
复制代码
def RVI(df):
    close = df.close
    open = df.open
    high = df.high
    low = df.low
    X = close-open+2*(close.shift()-open.shift())+
    2*(close.shift(periods=2)-open.shift(periods=2))*(close.shift(periods=3)-
    open.shift(periods=3))/6
    Y = high-low+2*(high.shift()-low.shift())+
    2*(high.shift(periods=2)-low.shift(periods=2))*(high.shift(periods=3)-
    low.shift(periods=3))/6
    Z = talib.MA(X, timeperiod=10)*10
    D = talib.MA(Y, timeperiod=10)*10
    return Z/D
复制代码

参考博客

pypi.org/project/sto…oop

anaconda.org/conda-forge…网站

www.geek-share.com/detail/2749…ui

相关文章
相关标签/搜索