题目:这里php
题意:node
感受并不能表达清楚题意,因此ios
Problem Description
In mathematics, and more specifically in graph theory, a tree is an undirected graph in which any two nodes are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.
You find a partial tree on the way home. This tree has
n nodes but lacks of n−1 edges. You want to complete this tree by adding n−1 edges. There must be exactly one path between any two nodes after adding. As you know, there are nn−2 ways to complete this tree, and you want to make the completed tree as cool as possible. The coolness of a tree is the sum of coolness of its nodes. The coolness of a node is f(d), where f is a predefined function and d is the degree of this node. What's the maximum coolness of the completed tree?
Input
The first line contains an integer
T indicating the total number of test cases.
Each test case starts with an integer n in one line,
then one line with n−1 integers f(1),f(2),…,f(n−1).
1≤T≤2015
2≤n≤2015
0≤f(i)≤10000
There are at most 10 test cases with n>100.
Output
For each test case, please output the maximum coolness of the completed tree in one line.
Sample Input
Sample Output
首先,这个最终答案是与点的度有关,因为是个树,能够知道最后全部点的度数和是n*2-2,还有,每一个点至少得有一个度,因此最终答案得先加上f[1]*n,而后如今
还剩下n-2个度,须要在n个点里分配,使得分配以后的权值最大,可是这个分配因为是有关联的,一个点的度数加了1以后必须得有另外一个点的度数也加1,因此咱们的
分配方案还得知足这个条件,不能随意分配,可是经过随意取几个n值构造一下树发现,n-2个度任意分给n个点的方案可以知足构造出一棵树,并且这个构造还挺有
规律,有递推性,因此大胆认为能够任意分配,好,如今n-2个度分配给n个点,每次能够分配1到n-1个度,问怎么分配值f()最大,这不就是一个背包么,仍是一个彻底
背包。再注意一下这是在每一个点已经有了一个度的前提下,因此得减去f[1]。
1 #include<cstdio>
2 #include<cstring>
3 #include<iostream>
4 #include<algorithm>
5 using namespace std;
6
7 #define inf 0x3f3f3f3f
8 const int M = 1e4 + 10;
9 int dp[M],a[M];
10
11 int max(int x,int y){return x>y?x:y;}
12
13 int main()
14 {
15 int t,n;
16 scanf("%d",&t);
17 while (t--){
18 scanf("%d",&n);
19 for (int i=1 ; i<n ; i++) {
20 scanf("%d",&a[i]);
21 if (i!=1) a[i]-=a[1];
22 }
23 //int pa=n*2-2;
24 for (int i=0 ; i<=n ; i++) dp[i]=-inf;
25 dp[0]=0;//dp[1]=a[1];
26 for (int i=2 ; i<n ; i++) {
27 for (int j=0 ; j+i-1<=n-2 ; j++)
28 dp[i+j-1] = max(dp[i+j-1],dp[j]+a[i]);
29 }
30 printf("%d\n",dp[n-2]+n*a[1]);
31 }
32 return 0;
33 }