标准的基于欧式距离的模板匹配算法优源码化和实现(附源代码)。

     好久没有出去溜达了,今每天气好,就放松放松去,晚上在办公室没啥事,把之前写的一个基于标准的欧式距离的模板匹配代码共享吧。html

     opencv有模板匹配的代码,我没看他是如何优化的,因此无论他吧,我只描述我本身实现。算法

     基于欧式距离的模板匹配就是遍历被匹配图的每个像素,而后计算以该像素为中心,和模板图重叠部分的像素的欧式距离,当模板图越大时,计算就急剧增长,所以作优化才能有真正的实用价值。函数

     两个标量的欧式距离表达式为 (a - b) * (a - b),展开后为 a^2 + b^ 2 - 2ab,咱们每个像素点的计算就是WM * HM个像素色阶值的距离的累加和(WM和HM分别为模板图的宽度和高度),模板匹配中,模板图全部像素的平方和是固定的,能够提早计算,而被匹配图中每一个像素点周边WM * HM的像素的平方和可使用相似BoxBlur中懒惰算法快速的获得,而只有二者的成绩项是必须每一个点从新计算,这也是整个计算过程当中最为耗时的部分,若是直接用C的代码写出来,恐怕等到花儿都谢了。post

     我在图像处理中任意核卷积(matlab中conv2函数)的快速实现一文中曾经给出过一种基于SSE的的快速卷积的算法,他能够一次性计算出16个字节的乘法,速度所以也获得了大的提高,所以,彻底能够用在上述的计算a * b的过程当中,这样咱们的模板匹配速度就能有质的提升。优化

    计算模板图的像素自乘平方和代码很是简单,也没啥耗时,简单代码以下:url

int GetPowerSum(TMatrix *Src)            //    无需注释
{
    if (Src == NULL || Src->Data == NULL) return 0; if (Src->Depth != IS_DEPTH_8U) return 0; int X, Y, Sum, Width = Src->Width, Height = Src->Height; unsigned char *LinePS; if (Src->Channel == 1) { for (Y = 0, Sum = 0; Y < Height; Y++) { LinePS = Src->Data + Y * Src->WidthStep; for (X = 0; X < Width; X++) { Sum += LinePS[X] * LinePS[X]; } } } else { for (Y = 0, Sum = 0; Y < Height; Y++) { LinePS = Src->Data + Y * Src->WidthStep; for (X = 0; X < Width; X++) { Sum += LinePS[0] * LinePS[0] + LinePS[1] * LinePS[1] + LinePS[2] * LinePS[2]; LinePS += 3; } } } return Sum; }

  而计算被匹配图中每一个像素为中心,WH*WM范围内像素的自乘平方和的O(1)算法也比较简单:
/// <summary>
/// 计算图像的局部平方和,速度已经优化,支持1和3通道图像。(2015.10.5日)
/// </summary>
/// <param name="Src">待求平方和的图像。</param>
/// <param name="Dest">平方和数据,须要使用int类型矩阵保存,大小为Src->Width - SizeX + 1, Src->Height - SizeY + 1,程序内部分配数据。</param>
/// <param name="SizeX">在水平方向使用的模板大小,若是是半径模式,对应的量为2 * Radius + 1。</param>
/// <param name="SizeY">在垂直方向使用的模板大小,若是是半径模式,对应的量为2 * Radius + 1。</param>
/// <remarks> 1:使用了相似BoxBlur里的优化算法,耗时和参数基本无关。</remarks>
/// <remarks> 2:也可使用积分图实现。</remarks>

IS_RET GetLocalSquareSum(TMatrix *Src, TMatrix **Dest, int SizeX, int SizeY) { if (Src == NULL || Src->Data == NULL) return IS_RET_ERR_NULLREFERENCE; if (Src->Depth != IS_DEPTH_8U || Src->Channel == 4) return IS_RET_ERR_NOTSUPPORTED; if (SizeX < 0 || SizeY < 0) return IS_RET_ERR_ARGUMENTOUTOFRANGE; int X, Y, Z, SrcW, SrcH, DestW, DestH, LastIndex, NextIndex, Sum; int *ColSum, *LinePD; unsigned char *SamplePS, *LastAddress, *NextAddress; IS_RET Ret = IS_RET_OK; SrcW = Src->Width, SrcH = Src->Height; DestW = SrcW - SizeX + 1, DestH = SrcH - SizeY + 1; Ret = IS_CreateMatrix(DestW, DestH, IS_DEPTH_32S, 1, Dest); if (Ret != IS_RET_OK) goto Done; ColSum = (int*)IS_AllocMemory(SrcW * sizeof(int), true); if (ColSum == NULL) {Ret = IS_RET_ERR_OUTOFMEMORY; goto Done;} if (Src->Channel == 1) { for (Y = 0; Y < DestH; Y++) { LinePD = (int *)((*Dest)->Data + Y * (*Dest)->WidthStep); if (Y == 0) { for (X = 0; X < SrcW; X++) { Sum = 0; for (Z = 0; Z < SizeY; Z++) { SamplePS = Src->Data + Z * Src->WidthStep + X; Sum += SamplePS[0] * SamplePS[0] ; } ColSum[X] = Sum; } } else { LastAddress = Src->Data + (Y - 1) * Src->WidthStep; NextAddress = Src->Data + (Y + SizeY - 1) * Src->WidthStep; for (X = 0; X < SrcW; X++) { ColSum[X] -= LastAddress[X] * LastAddress[X] - NextAddress[X] * NextAddress[X]; } } for (X = 0; X < DestW; X++) { if (X == 0) { Sum = 0; for (Z = 0; Z < SizeX; Z++) { Sum += ColSum[Z]; } } else { Sum -= ColSum[X - 1] - ColSum[X + SizeX - 1]; } LinePD[X] = Sum; } } } else if (Src->Channel == 3) { for (Y = 0; Y < DestH; Y++) { LinePD = (int *)((*Dest)->Data + Y * (*Dest)->WidthStep); if (Y == 0) { for (X = 0; X < SrcW; X++) { Sum = 0; for (Z = 0; Z < SizeY; Z++) { SamplePS = Src->Data + Z * Src->WidthStep + X * 3; // 三通道累加到一块儿 Sum += SamplePS[0] * SamplePS[0] + SamplePS[1] * SamplePS[1] + SamplePS[2] * SamplePS[2]; } ColSum[X] = Sum; } } else { LastAddress = Src->Data + (Y - 1) * Src->WidthStep; NextAddress = Src->Data + (Y + SizeY - 1) * Src->WidthStep; for (X = 0; X < SrcW; X++) { ColSum[X] += NextAddress[0] * NextAddress[0] + NextAddress[1] * NextAddress[1] + NextAddress[2] * NextAddress[2] - LastAddress[0] * LastAddress[0] - LastAddress[1] * LastAddress[1] - LastAddress[2] * LastAddress[2]; LastAddress += 3; NextAddress += 3; } } for (X = 0; X < DestW; X++) { if (X == 0) { Sum = 0; for (Z = 0; Z < SizeX; Z++) { Sum += ColSum[Z]; } } else { Sum -= ColSum[X - 1] - ColSum[X + SizeX - 1]; } LinePD[X] = Sum; } } } Done: IS_FreeMemory(ColSum); return Ret; }
  上述代码思路相似于BoxBlur的实现方式,若是还想更快点,能够参考解析opencv中Box Filter的实现并提出进一步加速的方案(源码共享)一文的基于SSE的处理方式,有兴趣的朋友能够自研。

       其实速度也不快,可是有些应用场合模板图很小(好比16*16的),被匹配图也不大,好比640 * 480的,这个时候大概也就30ms左右吧,若是是灰度的匹配那就能更快了。spa

       其实代码若是想优化,仍是能够用线程并行的。线程

a3d

      代码下载:http://files.cnblogs.com/files/Imageshop/MatchTemplate.rar(解压密码: Buy me a beer)code

 

相关文章
相关标签/搜索