神经网络理论基础及 Python 实现

一、多层前向神经网络 多层前向神经网络由三部分组成:输出层、隐藏层、输出层,每层由单元组成; 输入层由训练集的实例特征向量传入,经过连接结点的权重传入下一层,前一层的输出是下一层的输入;隐藏层的个数是任意的,输入层只有一层,输出层也只有一层; 除去输入层之外,隐藏层和输出层的层数和为n,则该神经网络称为n层神经网络,如下图为2层的神经网络; 一层中加权求和,根据非线性方程进行转化输出;理论上,如果
相关文章
相关标签/搜索