[CVPR 2017] Semantic Autoencoder for Zero-Shot Learning论文笔记

http://openaccess.thecvf.com/content_cvpr_2017/papers/Kodirov_Semantic_Autoencoder_for_CVPR_2017_paper.pdfweb

Semantic Autoencoder for Zero-Shot Learning,Elyor Kodirov Tao Xiang Shaogang Gong,Queen Mary University of London, UK,{e.kodirov, t.xiang, s.gong}@qmul.ac.uk算法

亮点性能

  • 经过对耦学习提高零次学习系统的性能(相似CycleGan)
  • 结构很是简洁,且可直接求解,速度很是快
  • 有效应用到其余相关任务(监督聚类)上,证实了范化性能

方法学习

 

Linear autoencoder测试

 

Model Formulationspa

which is a well-known Sylvester equation which can be solved efficiently by the Bartels-Stewart algorithm (matlab sylvester).3d

零次学习:基于以上算法有两种测试的方法:code

  • 将一个未知的类别特征样本xi经过W映射到语义空间(属性)si,经过比较语义空间的距离找到离它最近的类别(无训练样本),即为它的标签
  • 将全部无训练数据类别的语义特征S经过WT映射到特征空间X,经过比较一个未知类别的样本xi和映射到特征空间的类别中心X的距离,找到离它最近的类别,即为它的标签
  • 以上两种算法获得结果的准确度基本相同。

监督聚类:在这个问题中,语义空间即为类别标签空间(one-hot class label)。全部测试数据被影射到训练类别标签空间,而后使用k-means聚合orm

与已有模型的关系零度学习已有模型通常学习一个知足如下条件的影射:blog

 

或者,在[54]中将属性影射到特征空间,学习目标变为,

 

文中的算法结合了这二者,并且因为W*=WT,在对耦学习中W不可能太大(不然,x乘以两个范数很大的的矩阵没法恢复原来的初始值),正则化项能够被忽略。

 

 

实验

零次学习

数据集:Semantic word vector representation is used for large-scale datasets (ImNet-1 and ImNet-2). We train a skip-gram text model on a corpus of 4.6M Wikipedia documents to obtain the word2vec2 [38, 37] word vectors.

 

特征:除 ImNet-1用AlexNet提取外,其余均使用了GoogleNet

结果:

  • Our SAE model achieves the best results on all 6 datasets. 
  • On the smallscale datasets, the gap between our model’s results to the strongest competitor ranges from 3.5% to 6.5%. 
  • On the large-scale datasets, the gaps are even bigger: On the largest ImNet-2, our model improves over the state-of-the-art SS-Voc [22] by 8.8%.
  • Both the encoder and decoder projection functions in our SAE model (SAE (W) and SAE (WT) respectively) can be used for effective ZSL. 
    • The encoder projection function seems to be slightly better overall.
  • Measures how well a zero-shot learning method can trade-off between recognising data from seen classes and that of unseen classes
    • Holding out 20% of the data samples from the seen classes and mixing them with the samples from the unseen classes.
    • On AwA, our model is slightly worse than the SynCstruct [13].
    • However, on the more challenging CUB dataset, our method significantly outperforms the competitors.

聚类

数据集: A synthetic dataset and Oxford Flowers-17 (848 images)

结果:

  • On computational cost, our model (93s) is more expensive than MLCA (39%) but much better than all others (hours~days).
  • Achieves the best clustering accuracy
相关文章
相关标签/搜索