python---协程

引子

以前咱们学习了线程、进程的概念,了解了在操做系统中进程是资源分配的最小单位,线程是CPU调度的最小单位。按道理来讲咱们已经算是把cpu的利用率提升不少了。可是咱们知道不管是建立多进程仍是建立多线程来解决问题,都要消耗必定的时间来建立进程、建立线程、以及管理他们之间的切换。
  随着咱们对于效率的追求不断提升,基于单线程来实现并发又成为一个新的课题,即只用一个主线程(很明显可利用的cpu只有一个)状况下实现并发。这样就能够节省建立线进程所消耗的时间。
  为此咱们须要先回顾下并发的本质:切换+保存状态
  cpu正在运行一个任务,会在两种状况下切走去执行其余的任务(切换由操做系统强制控制),一种状况是该任务发生了阻塞,另一种状况是该任务计算的时间过长python

clipboard.png

在介绍进程理论时,说起进程的三种执行状态,而线程才是执行单位,因此也能够将上图理解为线程的三种状态
一:其中第二种状况并不能提高效率,只是为了让cpu可以雨露均沾,实现看起来全部任务都被“同时”执行的效果,若是多个任务都是纯计算的,这种切换反而会下降效率。
  为此咱们能够基于yield来验证。yield自己就是一种在单线程下能够保存任务运行状态的方法:编程

1 yiled能够保存状态,yield的状态保存与操做系统的保存线程状态很像,可是yield是代码级别控制的,更轻量级
2 send能够把一个函数的结果传给另一个函数,以此实现单线程内程序之间的切换
#串行执行
import time
def consumer(res):
    '''任务1:接收数据,处理数据'''
    pass

def producer():
    '''任务2:生产数据'''
    res=[]
    for i in range(10000000):
        res.append(i)
    return res

start=time.time()
#串行执行
res=producer()
consumer(res) #写成consumer(producer())会下降执行效率
stop=time.time()
print(stop-start) #1.874000072479248


#基于yield并发执行
import time
def consumer():
    '''任务1:接收数据,处理数据'''
    while True:
        print("this is consumer")
        x=yield

def producer():
    '''任务2:生产数据'''
    g=consumer()
    next(g)
    for i in range(10):
        print("this is prodecer")
        g.send(i)

start=time.time()
#基于yield保存状态,实现两个任务直接来回切换,即并发的效果
#PS:若是每一个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
producer()

stop=time.time()
print(stop-start) #2.0272178649902344

二:第一种状况的切换。在任务一遇到io状况下,切到任务二去执行,这样就能够利用任务一阻塞的时间完成任务二的计算,效率的提高就在于此。数组

import time
def consumer():
    '''任务1:接收数据,处理数据'''
    while True:
        x=yield

def producer():
    '''任务2:生产数据'''
    g=consumer()
    next(g)
    for i in range(10000000):
        g.send(i)
        time.sleep(2)

start=time.time()
producer() #并发执行,可是任务producer遇到io就会阻塞住,并不会切到该线程内的其余任务去执行

stop=time.time()
print(stop-start)

对于单线程下,咱们不可避免程序中出现io操做,但若是咱们能在本身的程序中(即用户程序级别,而非操做系统级别)控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另一个任务去计算,这样就保证了该线程可以最大限度地处于就绪态,即随时均可以被cpu执行的状态,至关于咱们在用户程序级别将本身的io操做最大限度地隐藏起来,从而能够迷惑操做系统,让其看到:该线程好像是一直在计算,io比较少,从而更多的将cpu的执行权限分配给咱们的线程。多线程

协程的本质就是在单线程下,由用户本身控制一个任务遇到io阻塞了就切换另一个任务去执行,以此来提高效率。为了实现它,咱们须要找寻一种能够同时知足如下条件的解决方案:并发

1. 能够控制多个任务之间的切换,切换以前将任务的状态保存下来,以便从新运行时,能够基于暂停的位置继续执行。
2. 做为1的补充:能够检测io操做,在遇到io操做的状况下才发生切换

协程介绍

协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序本身控制调度的。
须要强调的是:app

1. python的线程属于内核级别的,即由操做系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其余线程运行)
2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操做系统)控制切换,以此来提高效率(!!!非io操做的切换与效率无关)

对比操做系统控制线程的切换,用户在单线程内控制协程的切换
优势以下:异步

1. 协程的切换开销更小,属于程序级别的切换,操做系统彻底感知不到,于是更加轻量级
2. 单线程内就能够实现并发的效果,最大限度地利用cpu

缺点以下:socket

1. 协程的本质是单线程下,没法利用多核,能够是一个程序开启多个进程,每一个进程内开启多个线程,每一个线程内开启协程
2. 协程指的是单个线程,于是一旦协程出现阻塞,将会阻塞整个线程

总结协程特色:async

1.必须在只有一个单线程里实现并发
2.修改共享数据不需加锁
3.用户程序里本身保存多个控制流的上下文栈
4.一个协程遇到IO操做自动切换到其它协程(如何实现检测IO,yield、greenlet都没法实现,就用到了gevent模块(select机制))

Gevent模块

安装:pip3 install gevent
Gevent 是一个第三方库,能够轻松经过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet所有运行在主程序操做系统进程的内部,但它们被协做式地调度。
用法介绍异步编程

g1=gevent.spawn(func,1,,2,3,x=4,y=5)建立一个协程对象g1,spawn括号内第一个参数是函数名,
如eat,后面能够有多个参数,能够是位置实参或关键字实参,都是传给函数eat的

g2=gevent.spawn(func2)

g1.join() #等待g1结束

g2.join() #等待g2结束

#或者上述两步合做一步:gevent.joinall([g1,g2])

g1.value#拿到func1的返回值

例:遇到io主动切换

import gevent
def eat(name):
    print('%s eat 1' %name)
    gevent.sleep(2)
    print('%s eat 2' %name)

def play(name):
    print('%s play 1' %name)
    gevent.sleep(1)
    print('%s play 2' %name)


g1=gevent.spawn(eat,'egon')
g2=gevent.spawn(play,'egon')
g1.join()
g2.join()
#或者gevent.joinall([g1,g2])
print('主')

上例gevent.sleep(2)模拟的是gevent能够识别的io阻塞,而time.sleep(2)或其余的阻塞,gevent是不能直接识别的须要用下面一行代码,打补丁,就能够识别了

from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块以前

或者咱们干脆记忆成:要用gevent,须要将from gevent import monkey;monkey.patch_all()放到文件的开头

from gevent import monkey;monkey.patch_all()

import gevent
import time
def eat():
    print('eat food 1')
    time.sleep(2)
    print('eat food 2')

def play():
    print('play 1')
    time.sleep(1)
    print('play 2')

g1=gevent.spawn(eat)
g2=gevent.spawn(play)
gevent.joinall([g1,g2])
print('主')

咱们能够用threading.current_thread().getName()来查看每一个g1和g2,查看的结果为DummyThread-n,即假线程

from gevent import monkey;monkey.patch_all()
import threading
import gevent
import time
def eat():
    print(threading.current_thread().getName())
    print('eat food 1')
    time.sleep(2)
    print('eat food 2')

def play():
    print(threading.current_thread().getName())
    print('play 1')
    time.sleep(1)
    print('play 2')

g1=gevent.spawn(eat)
g2=gevent.spawn(play)
gevent.joinall([g1,g2])
print('主')

Gevent之同步与异步

from gevent import spawn, joinall, monkey;monkey.patch_all()
import time
def task(pid):
    """
    Some non-deterministic task
    """
    time.sleep(0.5)
    print('Task %s done' % pid)


def synchronous():  # 同步
    for i in range(10):
        task(i)
def asynchronous():  # 异步
    g_l = [spawn(task, i) for i in range(10)]
    joinall(g_l)
    print('DONE')
if __name__ == '__main__':
    print('Synchronous:')
    synchronous()
    print('Asynchronous:')
    asynchronous()
#  上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。
#  初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,
#  后者阻塞当前流程,并执行全部给定的greenlet任务。执行流程只会在 全部greenlet执行完后才会继续向下走。

协程socket

from gevent import monkey;monkey.patch_all()
import socket
import gevent

def talk(conn):
    while True:
        conn.send(b'hello')
        print(conn.recv(1024))

sk = socket.socket()
sk.bind(('127.0.0.1',9090))
sk.listen()

while True:
    conn,addr = sk.accept()
    g = gevent.spawn(talk,conn)
相关文章
相关标签/搜索