激活函数-relu-sigmoid-tanh

1.激活函数 1.1激活函数是什么?   激活函数的主要作用是提供网络的非线性建模能力。如果没有激活函数,那么该网络仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络也是等价的。因此也可以认为,只有加入了激活函数之后,深度神经网络才具备了分层的非线性映射学习能力。 那么激活函数应该具有什么样的性质呢? 可微性: 当优化方法是基于梯度的时候,这个性质是必须的。 单调性: 当激活函数
相关文章
相关标签/搜索