典型CNN神经网络结构

LeNet-5,用来识别数字的卷积网络  C1层是一个卷积层,由6个特征图Feature Map构成。特征图中每个神经元与输入为5*5的邻域相连。特征图的大小为28*28,这样能防止输入的连接掉到边界之外(32-5+1=28)。C1有156个可训练参数(每个滤波器5*5=25个unit参数和一个bias参数,一共6个滤波器,共(5*5+1)*6=156个参数),共156*(28*28)=122,3
相关文章
相关标签/搜索