从贝叶斯角度看正则化

Regularization: A Bayesian point of view Introduction ​ 正则化(regularization)是防止模型过拟合(overfitting)的 有效方式之一。常用的正则化包括L1正则和L2正则,我们知道使用L1正则化的回归对应LASSO(最小绝对收缩选择因子)回归,使得参数稀疏化,倾向于产生稀疏模型,是一种嵌入式特征选择方法,其特征选择过程和学习
相关文章
相关标签/搜索