大体顺序 from... where.... select...group by... having ... order by...
hive语句和mysql均可以经过explain查看执行计划,这样就能够查看执行顺序,好比mysql
explain select city,ad_type,device,sum(cnt) as cnt from tb_pmp_raw_log_basic_analysis where day = '2016-05-28' and type = 0 and media = 'sohu' and (deal_id = '' or deal_id = '-' or deal_id is NULL) group by city,ad_type,device
显示执行计划以下sql
STAGE DEPENDENCIES: Stage-1 is a root stage Stage-0 is a root stage STAGE PLANS: Stage: Stage-1 Map Reduce Map Operator Tree: TableScan alias: tb_pmp_raw_log_basic_analysis Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: (((deal_id = '') or (deal_id = '-')) or deal_id is null) (type: boolean) Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: city (type: string), ad_type (type: string), device (type: string), cnt (type: bigint) outputColumnNames: city, ad_type, device, cnt Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE Group By Operator aggregations: sum(cnt) keys: city (type: string), ad_type (type: string), device (type: string) mode: hash outputColumnNames: _col0, _col1, _col2, _col3 Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string) sort order: +++ Map-reduce partition columns: _col0 (type: string), _col1 (type: string), _col2 (type: string) Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE value expressions: _col3 (type: bigint) Reduce Operator Tree: Group By Operator aggregations: sum(VALUE._col0) keys: KEY._col0 (type: string), KEY._col1 (type: string), KEY._col2 (type: string) mode: mergepartial outputColumnNames: _col0, _col1, _col2, _col3 Statistics: Num rows: 4097678 Data size: 290028976 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: bigint) outputColumnNames: _col0, _col1, _col2, _col3 Statistics: Num rows: 4097678 Data size: 290028976 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows: 4097678 Data size: 290028976 Basic stats: COMPLETE Column stats: NONE table: input format: org.apache.hadoop.mapred.TextInputFormat output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Stage: Stage-0 Fetch Operator limit: -1
具体介绍以下 express
**stage1的map阶段** TableScan:from加载表,描述中有行数和大小等 Filter Operator:where过滤条件筛选数据,描述有具体筛选条件和行数、大小等 Select Operator:筛选列,描述中有列名、类型,输出类型、大小等。 Group By Operator:分组,描述了分组后须要计算的函数,keys描述用于分组的列,outputColumnNames为输出的列名,能够看出列默认使用固定的别名_col0,以及其余信息 Reduce Output Operator:map端本地的reduce,进行本地的计算,而后按列映射到对应的reduce **stage1的reduce阶段Reduce Operator Tree** Group By Operator:整体分组,并按函数计算。map计算后的结果在reduce端的合并。描述相似。mode: mergepartial是说合并map的计算结果。map端是hash映射分组 Select Operator:最后过滤列用于输出结果 File Output Operator:输出结果到临时文件中,描述介绍了压缩格式、输出文件格式。 stage0第二阶段没有,这里能够实现limit 100的操做。
总结apache
1,每一个stage都是一个独立的MR,复杂的hql语句能够产生多个stage,能够经过执行计划的描述,看看具体步骤是什么。 2,执行计划有时预测数据量,不是真实运行,可能不许确