核密度估计 Kernel Density Estimation(KDE)

写在前面 给定一个样本集,怎么得到该样本集的分布密度函数,解决这一问题有两个方法: 1.参数估计方法 简单来讲,即假定样本集符合某一概率分布,然后根据样本集拟合该分布中的参数,例如:似然估计,混合高斯等,由于参数估计方法中需要加入主观的先验知识,往往很难拟合出与真实分布的模型; 2.非参数估计 和参数估计不同,非参数估计并不加入任何先验知识,而是根据数据本身的特点、性质来拟合分布,这样能比参数估计
相关文章
相关标签/搜索