精确率、召回率、准确率与ROC曲线

精确率表示的是预测为某类样本(例如正样本)中有多少是真正的该类样本,一般用来评价分类任务模型。 比如对于一个分类模型,预测结果为A类的所有样本中包含A0个真正的A样本,和A1个不是A样本的其他类样本,那么该分类模型对于分类A的精确率就是A0/(A0+A1)。 通常来说精确率越高,分类效果越好。但是在样本分布非常不均衡的情况下, 精确率高并不一定意味着是一个好的模型。 比如对于预测长沙明天是否会下雪
相关文章
相关标签/搜索