损失函数与代价函数区别

各种损失函数的优缺点详解 损失函数或者代价函数的目的是:衡量模型的预测能力的好坏。 损失函数(Loss function):是定义在单个训练样本上的,也就是就算一个样本的误差,比如我们想要分类,就是预测的类别和实际类别的区别,是一个样本的哦,用L表示。 代价函数(Cost function):是定义在整个训练集上面的,也就是所有样本的误差的总和的平均,也就是损失函数的总和的平均,有没有这个平均其实
相关文章
相关标签/搜索