转自 ibireme的博客 http://blog.ibireme.com/2015/05/18/runloop/php
RunLoop 是 iOS 和 OS X 开发中很是基础的一个概念,这篇文章将从 CFRunLoop 的源码入手,介绍 RunLoop 的概念以及底层实现原理。以后会介绍一下在 iOS 中,苹果是如何利用 RunLoop 实现自动释放池、延迟回调、触摸事件、屏幕刷新等功能的。html
目录前端
RunLoop 的概念segmentfault
RunLoop 与线程的关系安全
RunLoop 对外的接口网络
RunLoop 的 Mode架构
RunLoop 的内部逻辑app
RunLoop 的底层实现框架
苹果用 RunLoop 实现的功能iphone
AutoreleasePool
事件响应
手势识别
界面更新
定时器
PerformSelecter
关于GCD
关于网络请求
RunLoop 的概念
通常来说,一个线程一次只能执行一个任务,执行完成后线程就会退出。若是咱们须要一个机制,让线程能随时处理事件但并不退出,一般的代码逻辑是这样的:
function loop() { initialize(); do { var message = get_next_message(); process_message(message); } while (message != quit); }
这种模型一般被称做 Event Loop。 Event Loop 在不少系统和框架里都有实现,好比 Node.js 的事件处理,好比 Windows 程序的消息循环,再好比 OSX/iOS 里的 RunLoop。实现这种模型的关键点在于:如何管理事件/消息,如何让线程在没有处理消息时休眠以免资源占用、在有消息到来时马上被唤醒。
因此,RunLoop 实际上就是一个对象,这个对象管理了其须要处理的事件和消息,并提供了一个入口函数来执行上面 Event Loop 的逻辑。线程执行了这个函数后,就会一直处于这个函数内部 "接受消息->等待->处理" 的循环中,直到这个循环结束(好比传入 quit 的消息),函数返回。
OSX/iOS 系统中,提供了两个这样的对象:NSRunLoop 和 CFRunLoopRef。
CFRunLoopRef 是在 CoreFoundation 框架内的,它提供了纯 C 函数的 API,全部这些 API 都是线程安全的。
NSRunLoop 是基于 CFRunLoopRef 的封装,提供了面向对象的 API,可是这些 API 不是线程安全的。
CFRunLoopRef 的代码是开源的,你能够在这里 http://opensource.apple.com/tarballs/CF/CF-855.17.tar.gz 下载到整个 CoreFoundation 的源码。为了方便跟踪和查看,你能够新建一个 Xcode 工程,把这堆源码拖进去看。
RunLoop 与线程的关系
首先,iOS 开发中能遇到两个线程对象: pthread_t 和 NSThread。过去苹果有份文档标明了 NSThread 只是 pthread_t 的封装,但那份文档已经失效了,如今它们也有可能都是直接包装自最底层的 mach thread。苹果并无提供这两个对象相互转换的接口,但无论怎么样,能够确定的是 pthread_t 和 NSThread 是一一对应的。好比,你能够经过 pthread_main_np() 或 [NSThread mainThread] 来获取主线程;也能够经过 pthread_self() 或 [NSThread currentThread] 来获取当前线程。CFRunLoop 是基于 pthread 来管理的。
苹果不容许直接建立 RunLoop,它只提供了两个自动获取的函数:CFRunLoopGetMain() 和 CFRunLoopGetCurrent()。 这两个函数内部的逻辑大概是下面这样:
/// 全局的Dictionary,key 是 pthread_t, value 是 CFRunLoopRef static CFMutableDictionaryRef loopsDic; /// 访问 loopsDic 时的锁 static CFSpinLock_t loopsLock; /// 获取一个 pthread 对应的 RunLoop。 CFRunLoopRef _CFRunLoopGet(pthread_t thread) { OSSpinLockLock(&loopsLock); if (!loopsDic) { // 第一次进入时,初始化全局Dic,并先为主线程建立一个 RunLoop。 loopsDic = CFDictionaryCreateMutable(); CFRunLoopRef mainLoop = _CFRunLoopCreate(); CFDictionarySetValue(loopsDic, pthread_main_thread_np(), mainLoop); } /// 直接从 Dictionary 里获取。 CFRunLoopRef loop = CFDictionaryGetValue(loopsDic, thread)); if (!loop) { /// 取不到时,建立一个 loop = _CFRunLoopCreate(); CFDictionarySetValue(loopsDic, thread, loop); /// 注册一个回调,当线程销毁时,顺便也销毁其对应的 RunLoop。 _CFSetTSD(..., thread, loop, __CFFinalizeRunLoop); } OSSpinLockUnLock(&loopsLock); return loop; } CFRunLoopRef CFRunLoopGetMain() { return _CFRunLoopGet(pthread_main_thread_np()); } CFRunLoopRef CFRunLoopGetCurrent() { return _CFRunLoopGet(pthread_self()); }
从上面的代码能够看出,线程和 RunLoop 之间是一一对应的,其关系是保存在一个全局的 Dictionary 里。线程刚建立时并无 RunLoop,若是你不主动获取,那它一直都不会有。RunLoop 的建立是发生在第一次获取时,RunLoop 的销毁是发生在线程结束时。你只能在一个线程的内部获取其 RunLoop(主线程除外)。
RunLoop 对外的接口
在 CoreFoundation 里面关于 RunLoop 有5个类:
CFRunLoopRef
CFRunLoopModeRef
CFRunLoopSourceRef
CFRunLoopTimerRef
CFRunLoopObserverRef
其中 CFRunLoopModeRef 类并无对外暴露,只是经过 CFRunLoopRef 的接口进行了封装。他们的关系以下:
一个 RunLoop 包含若干个 Mode,每一个 Mode 又包含若干个 Source/Timer/Observer。每次调用 RunLoop 的主函数时,只能指定其中一个 Mode,这个Mode被称做 CurrentMode。若是须要切换 Mode,只能退出 Loop,再从新指定一个 Mode 进入。这样作主要是为了分隔开不一样组的 Source/Timer/Observer,让其互不影响。
CFRunLoopSourceRef 是事件产生的地方。Source有两个版本:Source0 和 Source1。
Source0 只包含了一个回调(函数指针),它并不能主动触发事件。使用时,你须要先调用 CFRunLoopSourceSignal(source),将这个 Source 标记为待处理,而后手动调用 CFRunLoopWakeUp(runloop) 来唤醒 RunLoop,让其处理这个事件。
Source1 包含了一个 mach_port 和一个回调(函数指针),被用于经过内核和其余线程相互发送消息。这种 Source 能主动唤醒 RunLoop 的线程,其原理在下面会讲到。
CFRunLoopTimerRef 是基于时间的触发器,它和 NSTimer 是toll-free bridged 的,能够混用。其包含一个时间长度和一个回调(函数指针)。当其加入到 RunLoop 时,RunLoop会注册对应的时间点,当时间点到时,RunLoop会被唤醒以执行那个回调。
CFRunLoopObserverRef 是观察者,每一个 Observer 都包含了一个回调(函数指针),当 RunLoop 的状态发生变化时,观察者就能经过回调接受到这个变化。能够观测的时间点有如下几个:
typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) { kCFRunLoopEntry = (1UL << 0), // 即将进入Loop kCFRunLoopBeforeTimers = (1UL << 1), // 即将处理 Timer kCFRunLoopBeforeSources = (1UL << 2), // 即将处理 Source kCFRunLoopBeforeWaiting = (1UL << 5), // 即将进入休眠 kCFRunLoopAfterWaiting = (1UL << 6), // 刚从休眠中唤醒 kCFRunLoopExit = (1UL << 7), // 即将退出Loop };
上面的 Source/Timer/Observer 被统称为 mode item,一个 item 能够被同时加入多个 mode。但一个 item 被重复加入同一个 mode 时是不会有效果的。若是一个 mode 中一个 item 都没有,则 RunLoop 会直接退出,不进入循环。
RunLoop 的 Mode
CFRunLoopMode 和 CFRunLoop 的结构大体以下:
struct __CFRunLoopMode {
CFStringRef _name; // Mode Name, 例如 @"kCFRunLoopDefaultMode"
CFMutableSetRef _sources0; // Set
CFMutableSetRef _sources1; // Set
CFMutableArrayRef _observers; // Array
CFMutableArrayRef _timers; // Array ...
};
struct __CFRunLoop {
CFMutableSetRef _commonModes; // Set
CFMutableSetRef _commonModeItems; // Set
CFRunLoopModeRef _currentMode; // Current Runloop Mode
CFMutableSetRef _modes; // Set ...
};
这里有个概念叫 "CommonModes":一个 Mode 能够将本身标记为"Common"属性(经过将其 ModeName 添加到 RunLoop 的 "commonModes" 中)。每当 RunLoop 的内容发生变化时,RunLoop 都会自动将 _commonModeItems 里的 Source/Observer/Timer 同步到具备 "Common" 标记的全部Mode里。
应用场景举例:主线程的 RunLoop 里有两个预置的 Mode:kCFRunLoopDefaultMode 和 UITrackingRunLoopMode。这两个 Mode 都已经被标记为"Common"属性。DefaultMode 是 App 平时所处的状态,TrackingRunLoopMode 是追踪 ScrollView 滑动时的状态。当你建立一个 Timer 并加到 DefaultMode 时,Timer 会获得重复回调,但此时滑动一个TableView时,RunLoop 会将 mode 切换为 TrackingRunLoopMode,这时 Timer 就不会被回调,而且也不会影响到滑动操做。
有时你须要一个 Timer,在两个 Mode 中都能获得回调,一种办法就是将这个 Timer 分别加入这两个 Mode。还有一种方式,就是将 Timer 加入到顶层的 RunLoop 的 "commonModeItems" 中。"commonModeItems" 被 RunLoop 自动更新到全部具备"Common"属性的 Mode 里去。
CFRunLoop对外暴露的管理 Mode 接口只有下面2个:
CFRunLoopAddCommonMode(CFRunLoopRef runloop, CFStringRef modeName);
CFRunLoopRunInMode(CFStringRef modeName, ...);
Mode 暴露的管理 mode item 的接口有下面几个:
CFRunLoopAddSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef modeName);
CFRunLoopAddObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef modeName);
CFRunLoopAddTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);
CFRunLoopRemoveSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef modeName);
CFRunLoopRemoveObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef modeName);
CFRunLoopRemoveTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);
你只能经过 mode name 来操做内部的 mode,当你传入一个新的 mode name 但 RunLoop 内部没有对应 mode 时,RunLoop会自动帮你建立对应的 CFRunLoopModeRef。对于一个 RunLoop 来讲,其内部的 mode 只能增长不能删除。
苹果公开提供的 Mode 有两个:kCFRunLoopDefaultMode (NSDefaultRunLoopMode) 和 UITrackingRunLoopMode,你能够用这两个 Mode Name 来操做其对应的 Mode。
同时苹果还提供了一个操做 Common 标记的字符串:kCFRunLoopCommonModes (NSRunLoopCommonModes),你能够用这个字符串来操做 Common Items,或标记一个 Mode 为 "Common"。使用时注意区分这个字符串和其余 mode name。
RunLoop 的内部逻辑
根据苹果在文档里的说明,RunLoop 内部的逻辑大体以下:
其内部代码整理以下 (太长了不想看能够直接跳过去,后面会有说明):
/// 用DefaultMode启动 void CFRunLoopRun(void) { CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false); } /// 用指定的Mode启动,容许设置RunLoop超时时间 int CFRunLoopRunInMode(CFStringRef modeName, CFTimeInterval seconds, Boolean stopAfterHandle) { return CFRunLoopRunSpecific(CFRunLoopGetCurrent(), modeName, seconds, returnAfterSourceHandled); } /// RunLoop的实现 int CFRunLoopRunSpecific(runloop, modeName, seconds, stopAfterHandle) { /// 首先根据modeName找到对应mode CFRunLoopModeRef currentMode = __CFRunLoopFindMode(runloop, modeName, false); /// 若是mode里没有source/timer/observer, 直接返回。 if (__CFRunLoopModeIsEmpty(currentMode)) return; /// 1. 通知 Observers: RunLoop 即将进入 loop。 __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopEntry); /// 内部函数,进入loop __CFRunLoopRun(runloop, currentMode, seconds, returnAfterSourceHandled) { Boolean sourceHandledThisLoop = NO; int retVal = 0; do { /// 2. 通知 Observers: RunLoop 即将触发 Timer 回调。 __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeTimers); /// 3. 通知 Observers: RunLoop 即将触发 Source0 (非port) 回调。 __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeSources); /// 执行被加入的block __CFRunLoopDoBlocks(runloop, currentMode); /// 4. RunLoop 触发 Source0 (非port) 回调。 sourceHandledThisLoop = __CFRunLoopDoSources0(runloop, currentMode, stopAfterHandle); /// 执行被加入的block __CFRunLoopDoBlocks(runloop, currentMode); /// 5. 若是有 Source1 (基于port) 处于 ready 状态,直接处理这个 Source1 而后跳转去处理消息。 if (__Source0DidDispatchPortLastTime) { Boolean hasMsg = __CFRunLoopServiceMachPort(dispatchPort, &msg) if (hasMsg) goto handle_msg; } /// 通知 Observers: RunLoop 的线程即将进入休眠(sleep)。 if (!sourceHandledThisLoop) { __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeWaiting); } /// 7. 调用 mach_msg 等待接受 mach_port 的消息。线程将进入休眠, 直到被下面某一个事件唤醒。 /// ? 一个基于 port 的Source 的事件。 /// ? 一个 Timer 到时间了 /// ? RunLoop 自身的超时时间到了 /// ? 被其余什么调用者手动唤醒 __CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort) { mach_msg(msg, MACH_RCV_MSG, port); // thread wait for receive msg } /// 8. 通知 Observers: RunLoop 的线程刚刚被唤醒了。 __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopAfterWaiting); /// 收到消息,处理消息。 handle_msg: /// 9.1 若是一个 Timer 到时间了,触发这个Timer的回调。 if (msg_is_timer) { __CFRunLoopDoTimers(runloop, currentMode, mach_absolute_time()) } /// 9.2 若是有dispatch到main_queue的block,执行block。 else if (msg_is_dispatch) { __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg); } /// 9.3 若是一个 Source1 (基于port) 发出事件了,处理这个事件 else { CFRunLoopSourceRef source1 = __CFRunLoopModeFindSourceForMachPort(runloop, currentMode, livePort); sourceHandledThisLoop = __CFRunLoopDoSource1(runloop, currentMode, source1, msg); if (sourceHandledThisLoop) { mach_msg(reply, MACH_SEND_MSG, reply); } } /// 执行加入到Loop的block __CFRunLoopDoBlocks(runloop, currentMode); if (sourceHandledThisLoop && stopAfterHandle) { /// 进入loop时参数说处理完事件就返回。 retVal = kCFRunLoopRunHandledSource; } else if (timeout) { /// 超出传入参数标记的超时时间了 retVal = kCFRunLoopRunTimedOut; } else if (__CFRunLoopIsStopped(runloop)) { /// 被外部调用者强制中止了 retVal = kCFRunLoopRunStopped; } else if (__CFRunLoopModeIsEmpty(runloop, currentMode)) { /// source/timer/observer一个都没有了 retVal = kCFRunLoopRunFinished; } /// 若是没超时,mode里没空,loop也没被中止,那继续loop。 } while (retVal == 0); } /// 10. 通知 Observers: RunLoop 即将退出。 __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit); }
能够看到,实际上 RunLoop 就是这样一个函数,其内部是一个 do-while 循环。当你调用 CFRunLoopRun() 时,线程就会一直停留在这个循环里;直到超时或被手动中止,该函数才会返回。
RunLoop 的底层实现
从上面代码能够看到,RunLoop 的核心是基于 mach port 的,其进入休眠时调用的函数是 mach_msg()。为了解释这个逻辑,下面稍微介绍一下 OSX/iOS 的系统架构。
苹果官方将整个系统大体划分为上述4个层次:
应用层包括用户能接触到的图形应用,例如 Spotlight、Aqua、SpringBoard 等。
应用框架层即开发人员接触到的 Cocoa 等框架。
核心框架层包括各类核心框架、OpenGL 等内容。
Darwin 即操做系统的核心,包括系统内核、驱动、Shell 等内容,这一层是开源的,其全部源码均可以在 opensource.apple.com 里找到。
咱们在深刻看一下 Darwin 这个核心的架构:
其中,在硬件层上面的三个组成部分:Mach、BSD、IOKit (还包括一些上面没标注的内容),共同组成了 XNU 内核。
XNU 内核的内环被称做 Mach,其做为一个微内核,仅提供了诸如处理器调度、IPC (进程间通讯)等很是少许的基础服务。
BSD 层能够看做围绕 Mach 层的一个外环,其提供了诸如进程管理、文件系统和网络等功能。
IOKit 层是为设备驱动提供了一个面向对象(C++)的一个框架。
Mach 自己提供的 API 很是有限,并且苹果也不鼓励使用 Mach 的 API,可是这些API很是基础,若是没有这些API的话,其余任何工做都没法实施。在 Mach 中,全部的东西都是经过本身的对象实现的,进程、线程和虚拟内存都被称为"对象"。和其余架构不一样, Mach 的对象间不能直接调用,只能经过消息传递的方式实现对象间的通讯。"消息"是 Mach 中最基础的概念,消息在两个端口 (port) 之间传递,这就是 Mach 的 IPC (进程间通讯) 的核心。
Mach 的消息定义是在头文件的,很简单:
typedef struct { mach_msg_header_t header; mach_msg_body_t body; } mach_msg_base_t; typedef struct { mach_msg_bits_t msgh_bits; mach_msg_size_t msgh_size; mach_port_t msgh_remote_port; mach_port_t msgh_local_port; mach_port_name_t msgh_voucher_port; mach_msg_id_t msgh_id; } mach_msg_header_t;
一条 Mach 消息实际上就是一个二进制数据包 (BLOB),其头部定义了当前端口 local_port 和目标端口 remote_port,
发送和接受消息是经过同一个 API 进行的,其 option 标记了消息传递的方向:
mach_msg_return_t mach_msg( mach_msg_header_t *msg, mach_msg_option_t option, mach_msg_size_t send_size, mach_msg_size_t rcv_size, mach_port_name_t rcv_name, mach_msg_timeout_t timeout, mach_port_name_t notify);
为了实现消息的发送和接收,mach_msg() 函数其实是调用了一个 Mach 陷阱 (trap),即函数mach_msg_trap(),陷阱这个概念在 Mach 中等同于系统调用。当你在用户态调用 mach_msg_trap() 时会触发陷阱机制,切换到内核态;内核态中内核实现的 mach_msg() 函数会完成实际的工做,以下图:
这些概念能够参考维基百科: System_call、Trap_(computing)。
RunLoop 的核心就是一个 mach_msg() (见上面代码的第7步),RunLoop 调用这个函数去接收消息,若是没有别人发送 port 消息过来,内核会将线程置于等待状态。例如你在模拟器里跑起一个 iOS 的 App,而后在 App 静止时点击暂停,你会看到主线程调用栈是停留在 mach_msg_trap() 这个地方。
关于具体的如何利用 mach port 发送信息,能够看看 NSHipster 这一篇文章,或者这里的中文翻译 。
关于Mach的历史能够看看这篇颇有趣的文章:Mac OS X 背后的故事(三)Mach 之父 Avie Tevanian。
苹果用 RunLoop 实现的功能
首先咱们能够看一下 App 启动后 RunLoop 的状态:
CFRunLoop { current mode = kCFRunLoopDefaultMode common modes = { UITrackingRunLoopMode kCFRunLoopDefaultMode } common mode items = { // source0 (manual) CFRunLoopSource {order =-1, { callout = _UIApplicationHandleEventQueue}} CFRunLoopSource {order =-1, { callout = PurpleEventSignalCallback }} CFRunLoopSource {order = 0, { callout = FBSSerialQueueRunLoopSourceHandler}} // source1 (mach port) CFRunLoopSource {order = 0, {port = 17923}} CFRunLoopSource {order = 0, {port = 12039}} CFRunLoopSource {order = 0, {port = 16647}} CFRunLoopSource {order =-1, { callout = PurpleEventCallback}} CFRunLoopSource {order = 0, {port = 2407, callout = _ZL20notify_port_callbackP12__CFMachPortPvlS1_}} CFRunLoopSource {order = 0, {port = 1c03, callout = __IOHIDEventSystemClientAvailabilityCallback}} CFRunLoopSource {order = 0, {port = 1b03, callout = __IOHIDEventSystemClientQueueCallback}} CFRunLoopSource {order = 1, {port = 1903, callout = __IOMIGMachPortPortCallback}} // Ovserver CFRunLoopObserver {order = -2147483647, activities = 0x1, // Entry callout = _wrapRunLoopWithAutoreleasePoolHandler} CFRunLoopObserver {order = 0, activities = 0x20, // BeforeWaiting callout = _UIGestureRecognizerUpdateObserver} CFRunLoopObserver {order = 1999000, activities = 0xa0, // BeforeWaiting | Exit callout = _afterCACommitHandler} CFRunLoopObserver {order = 2000000, activities = 0xa0, // BeforeWaiting | Exit callout = _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv} CFRunLoopObserver {order = 2147483647, activities = 0xa0, // BeforeWaiting | Exit callout = _wrapRunLoopWithAutoreleasePoolHandler} // Timer CFRunLoopTimer {firing = No, interval = 3.1536e+09, tolerance = 0, next fire date = 453098071 (-4421.76019 @ 96223387169499), callout = _ZN2CAL14timer_callbackEP16__CFRunLoopTimerPv (QuartzCore.framework)} }, modes = { CFRunLoopMode { sources0 = { /* same as 'common mode items' */ }, sources1 = { /* same as 'common mode items' */ }, observers = { /* same as 'common mode items' */ }, timers = { /* same as 'common mode items' */ }, }, CFRunLoopMode { sources0 = { /* same as 'common mode items' */ }, sources1 = { /* same as 'common mode items' */ }, observers = { /* same as 'common mode items' */ }, timers = { /* same as 'common mode items' */ }, }, CFRunLoopMode { sources0 = { CFRunLoopSource {order = 0, { callout = FBSSerialQueueRunLoopSourceHandler}} }, sources1 = (null), observers = { CFRunLoopObserver >{activities = 0xa0, order = 2000000, callout = _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv} )}, timers = (null), }, CFRunLoopMode { sources0 = { CFRunLoopSource {order = -1, { callout = PurpleEventSignalCallback}} }, sources1 = { CFRunLoopSource {order = -1, { callout = PurpleEventCallback}} }, observers = (null), timers = (null), }, CFRunLoopMode { sources0 = (null), sources1 = (null), observers = (null), timers = (null), } } }
能够看到,系统默认注册了5个Mode:
1. kCFRunLoopDefaultMode: App的默认 Mode,一般主线程是在这个 Mode 下运行的。 2. UITrackingRunLoopMode: 界面跟踪 Mode,用于 ScrollView 追踪触摸滑动,保证界面滑动时不受其余 Mode 影响。 3. UIInitializationRunLoopMode: 在刚启动 App 时第进入的第一个 Mode,启动完成后就再也不使用。 4: GSEventReceiveRunLoopMode: 接受系统事件的内部 Mode,一般用不到。 5: kCFRunLoopCommonModes: 这是一个占位的 Mode,没有实际做用。 你能够在这里看到更多的苹果内部的 Mode,但那些 Mode 在开发中就很难遇到了。
当 RunLoop 进行回调时,通常都是经过一个很长的函数调用出去 (call out), 当你在你的代码中下断点调试时,一般能在调用栈上看到这些函数。下面是这几个函数的整理版本,若是你在调用栈中看到这些长函数名,在这里查找一下就能定位到具体的调用地点了:
{ /// 1. 通知Observers,即将进入RunLoop /// 此处有Observer会建立AutoreleasePool: _objc_autoreleasePoolPush(); __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopEntry); do { /// 2. 通知 Observers: 即将触发 Timer 回调。 __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeTimers); /// 3. 通知 Observers: 即将触发 Source (非基于port的,Source0) 回调。 __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeSources); __CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block); /// 4. 触发 Source0 (非基于port的) 回调。 __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__(source0); __CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block); /// 6. 通知Observers,即将进入休眠 /// 此处有Observer释放并新建AutoreleasePool: _objc_autoreleasePoolPop(); _objc_autoreleasePoolPush(); __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeWaiting); /// 7. sleep to wait msg. mach_msg() -> mach_msg_trap(); /// 8. 通知Observers,线程被唤醒 __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopAfterWaiting); /// 9. 若是是被Timer唤醒的,回调Timer __CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__(timer); /// 9. 若是是被dispatch唤醒的,执行全部调用 dispatch_async 等方法放入main queue 的 block __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(dispatched_block); /// 9. 若是若是Runloop是被 Source1 (基于port的) 的事件唤醒了,处理这个事件 __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION__(source1); } while (...); /// 10. 通知Observers,即将退出RunLoop /// 此处有Observer释放AutoreleasePool: _objc_autoreleasePoolPop(); __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopExit); }
AutoreleasePool
App启动后,苹果在主线程 RunLoop 里注册了两个 Observer,其回调都是 _wrapRunLoopWithAutoreleasePoolHandler()。
第一个 Observer 监视的事件是 Entry(即将进入Loop),其回调内会调用 _objc_autoreleasePoolPush() 建立自动释放池。其 order 是-2147483647,优先级最高,保证建立释放池发生在其余全部回调以前。
第二个 Observer 监视了两个事件: BeforeWaiting(准备进入休眠) 时调用_objc_autoreleasePoolPop() 和 _objc_autoreleasePoolPush() 释放旧的池并建立新池;Exit(即将退出Loop) 时调用 _objc_autoreleasePoolPop() 来释放自动释放池。这个 Observer 的 order 是 2147483647,优先级最低,保证其释放池子发生在其余全部回调以后。
在主线程执行的代码,一般是写在诸如事件回调、Timer回调内的。这些回调会被 RunLoop 建立好的 AutoreleasePool 环绕着,因此不会出现内存泄漏,开发者也没必要显示建立 Pool 了。
事件响应
苹果注册了一个 Source1 (基于 mach port 的) 用来接收系统事件,其回调函数为 __IOHIDEventSystemClientQueueCallback()。
当一个硬件事件(触摸/锁屏/摇晃等)发生后,首先由 IOKit.framework 生成一个 IOHIDEvent 事件并由 SpringBoard 接收。这个过程的详细状况能够参考这里。SpringBoard 只接收按键(锁屏/静音等),触摸,加速,接近传感器等几种 Event,随后用 mach port 转发给须要的App进程。随后苹果注册的那个 Source1 就会触发回调,并调用 _UIApplicationHandleEventQueue() 进行应用内部的分发。
_UIApplicationHandleEventQueue() 会把 IOHIDEvent 处理并包装成 UIEvent 进行处理或分发,其中包括识别 UIGesture/处理屏幕旋转/发送给 UIWindow 等。一般事件好比 UIButton 点击、touchesBegin/Move/End/Cancel 事件都是在这个回调中完成的。
手势识别
当上面的 _UIApplicationHandleEventQueue() 识别了一个手势时,其首先会调用 Cancel 将当前的 touchesBegin/Move/End 系列回调打断。随后系统将对应的 UIGestureRecognizer 标记为待处理。
苹果注册了一个 Observer 监测 BeforeWaiting (Loop即将进入休眠) 事件,这个Observer的回调函数是 _UIGestureRecognizerUpdateObserver(),其内部会获取全部刚被标记为待处理的 GestureRecognizer,并执行GestureRecognizer的回调。
当有 UIGestureRecognizer 的变化(建立/销毁/状态改变)时,这个回调都会进行相应处理。
界面更新
当在操做 UI 时,好比改变了 Frame、更新了 UIView/CALayer 的层次时,或者手动调用了 UIView/CALayer 的 setNeedsLayout/setNeedsDisplay方法后,这个 UIView/CALayer 就被标记为待处理,并被提交到一个全局的容器去。
苹果注册了一个 Observer 监听 BeforeWaiting(即将进入休眠) 和 Exit (即将退出Loop) 事件,回调去执行一个很长的函数:
_ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()。这个函数里会遍历全部待处理的 UIView/CAlayer 以执行实际的绘制和调整,并更新 UI 界面。
这个函数内部的调用栈大概是这样的:
_ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()
QuartzCore:CA::Transaction::observer_callback:
CA::Transaction::commit();
CA::Context::commit_transaction();
CA::Layer::layout_and_display_if_needed();
CA::Layer::layout_if_needed();
[CALayer layoutSublayers];
[UIView layoutSubviews];
CA::Layer::display_if_needed();
[CALayer display];
[UIView drawRect];
定时器
NSTimer 其实就是 CFRunLoopTimerRef,他们之间是 toll-free bridged 的。一个 NSTimer 注册到 RunLoop 后,RunLoop 会为其重复的时间点注册好事件。例如 10:00, 10:10, 10:20 这几个时间点。RunLoop为了节省资源,并不会在很是准确的时间点回调这个Timer。Timer 有个属性叫作 Tolerance (宽容度),标示了当时间点到后,允许有多少最大偏差。
若是某个时间点被错过了,例如执行了一个很长的任务,则那个时间点的回调也会跳过去,不会延后执行。就好比等公交,若是 10:10 时我忙着玩手机错过了那个点的公交,那我只能等 10:20 这一趟了。
CADisplayLink 是一个和屏幕刷新率一致的定时器(但实际实现原理更复杂,和 NSTimer 并不同,其内部实际是操做了一个 Source)。若是在两次屏幕刷新之间执行了一个长任务,那其中就会有一帧被跳过去(和 NSTimer 类似),形成界面卡顿的感受。在快速滑动TableView时,即便一帧的卡顿也会让用户有所察觉。Facebook 开源的 AsyncDisplayLink 就是为了解决界面卡顿的问题,其内部也用到了 RunLoop,这个稍后我会再单独写一页博客来分析。
PerformSelecter
当调用 NSObject 的 performSelecter:afterDelay: 后,实际上其内部会建立一个 Timer 并添加到当前线程的 RunLoop 中。因此若是当前线程没有 RunLoop,则这个方法会失效。
当调用 performSelector:onThread: 时,实际上其会建立一个 Timer 加到对应的线程去,一样的,若是对应线程没有 RunLoop 该方法也会失效。
关于GCD
实际上 RunLoop 底层也会用到 GCD 的东西,好比 RunLoop 是用 dispatch_source_t 实现的 Timer。但同时 GCD 提供的某些接口也用到了 RunLoop, 例如 dispatch_async()。
当调用 dispatch_async(dispatch_get_main_queue(), block) 时,libDispatch 会向主线程的 RunLoop 发送消息,RunLoop会被唤醒,并从消息中取得这个 block,并在回调 __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__() 里执行这个 block。但这个逻辑仅限于 dispatch 到主线程,dispatch 到其余线程仍然是由 libDispatch 处理的。
关于网络请求
iOS 中,关于网络请求的接口自下至上有以下几层:
CFSocket CFNetwork ->ASIHttpRequest NSURLConnection ->AFNetworking NSURLSession ->AFNetworking2, Alamofire
CFSocket 是最底层的接口,只负责 socket 通讯。
CFNetwork 是基于 CFSocket 等接口的上层封装,ASIHttpRequest 工做于这一层。
NSURLConnection 是基于 CFNetwork 的更高层的封装,提供面向对象的接口,AFNetworking 工做于这一层。
NSURLSession 是 iOS7 中新增的接口,表面上是和 NSURLConnection 并列的,但底层仍然用到了 NSURLConnection 的部分功能 (好比 com.apple.NSURLConnectionLoader 线程),AFNetworking2 和 Alamofire 工做于这一层。
下面主要介绍下 NSURLConnection 的工做过程。
一般使用 NSURLConnection 时,你会传入一个 Delegate,当调用了 [connection start] 后,这个 Delegate 就会不停收到事件回调。实际上,start 这个函数的内部会会获取 CurrentRunLoop,而后在其中的 DefaultMode 添加了4个 Source0 (即须要手动触发的Source)。CFMultiplexerSource 是负责各类 Delegate 回调的,CFHTTPCookieStorage 是处理各类 Cookie 的。
当开始网络传输时,咱们能够看到 NSURLConnection 建立了两个新线程:com.apple.NSURLConnectionLoader 和 com.apple.CFSocket.private。其中 CFSocket 线程是处理底层 socket 链接的。NSURLConnectionLoader 这个线程内部会使用 RunLoop 来接收底层 socket 的事件,并经过以前添加的 Source0 通知到上层的 Delegate。
NSURLConnectionLoader 中的 RunLoop 经过一些基于 mach port 的 Source 接收来自底层 CFSocket 的通知。当收到通知后,其会在合适的时机向 CFMultiplexerSource 等 Source0 发送通知,同时唤醒 Delegate 线程的 RunLoop 来让其处理这些通知。CFMultiplexerSource 会在 Delegate 线程的 RunLoop 对 Delegate 执行实际的回调。