AutoML算法之神经网络搜索(一种新的可微NAS方法)

背景介绍 近年来,神经网络搜索(NAS)极大地推动了神经网络设计的发展。以前的大多数工作都是计算密集型的,可用NAS方法通过在一个连续空间中构建一个覆盖所有可能搜索架构的超网络来降低搜索成本。然而,很少有能够搜索网络宽度(滤波器/通道的数量)的方案,因为按照传统的可微NAS范式,很难将具有不同宽度的架构集成到一个超网络中。在本文中,介绍一种新的可微NAS方法,通过构建一个紧密连接的搜索空间来实现同
相关文章
相关标签/搜索