宽度学习系统(Broad Learning System, BLS)

宽度学习系统(Broad Learning System, BLS)

做者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/html

宽度学习系统(Broad Learning System, BLS)由Chen等[1]提出,其基于“平展型”神经网络,因其高效性、结构灵活、且能够实现结构增量式学习等优点,引发了普遍的研究兴趣。该博客主要讲解BLS的大体原理与推导过程。网络

主要包括:框架

  1. 基础知识:奇异值分解(SVD),激活函数,普通方阵求逆(H可逆),求伪逆,岭回归与伪逆的近似,稀疏自编码器(Sparse Auto Encoder),以及Greville定理,其中Greville定理用于增量学习,分块矩阵求伪逆,详细推导请参考[3][4]与博客第四部分。
  2. 宽度学习系统(Broad Learning System, BLS):宽度学习系统的增量学习整体框架、增长额外的加强节点、增长额外的特征映射节点、增长额外的输入数据。
  3. 宽度学习系统(BLS)与极限学习机(ELM)的区别与联系。

1. 基础知识

2. 宽度学习系统(Broad Learning System, BLS)

3. 宽度学习系统(BLS)与极限学习机(ELM)、随机向量函数链网络(Random Vector Functional-Link Network, RVFLNN)的区别与联系

4. 关于Greville方法的参考

计算A的伪逆的Greville方法是一种有限迭代法,它在已知矩阵的前k列所构成子矩阵的广义逆矩阵基础上,来构造前k+1列所构成子矩阵的广义逆矩阵。所以,若矩阵A有n列,则通过n步就可获得A的伪逆。本节参考[3]。dom

5. 参考文献

[1] C. L. P. Chen and Z. Liu, "Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture," in IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 1, pp. 10-24, Jan. 2018, doi: 10.1109/TNNLS.2017.2716952.jsp

[2] Broad Learning System https://broadlearning.ai/函数

[3] 程云鹏, 张凯院, 徐仲. 高等学校教材 矩阵论[M]. 西北工业大学出版社, 1989.学习

[4] 王松桂. 广义逆矩阵及其应用[M]. 北京工业大学出版社, 1996.编码

[5] Extreme Learning Machine - 凯鲁嘎吉 - 博客园 spa

[6] 字典更新与K-SVD 之矩阵的奇异值分解(SVD) - 凯鲁嘎吉 - 博客园3d

[7] 澳门大学陈俊龙 | 宽度学习系统:一种不须要深度结构的高效增量学习系统 - 云基智能机器人实验室 

[8] 图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix) 之近端梯度降低(Proximal Gradient Descent, PGD) - 凯鲁嘎吉 - 博客园 

相关文章
相关标签/搜索