机器学习基本概念梳理

1.1 基本术语


数据集(data set):数据记录的集合算法

示例/样本(sample):每条记录,即对一个事件/对象的描述机器学习

属性(attribute)/特征(feature):反映时间或对象在某方面的表现或性质的事项ide

属性空间(attribute space)/样本空间(sample space)/输入空间:属性张成的空间函数

因为样本空间中每一点对应于一个坐标向量,所以一个示例也成为一个特征向量(feature vector)性能

学习(learning)/训练(training):从数据中学习模型的过程学习

训练数据(training data):训练过程当中使用的数据测试

训练集(training set):训练样本组成的集合spa

假设(hypothesis):学得的关于数据的某种潜在规律对象

真相/真实(ground-truth):关于数据的某种潜在规律自身blog

标记空间(label space)/输出空间:标记的集合

测试(testing):学得模型后,使用其进行预测的过程

测试样本(tesing sample):被预测的样本

根据预测的值的类型,学习任务能够被划分为分类(classification)回归(regression)聚类(clustering),etc.

根据训练数据是否有标记,学习任务可被划分为监督学习(supervised learning)无监督学习(unsupervised learning)

泛化(generalization):学得模型适用于新样本的能力

独立同分布(independent and identically distributed, i.i.d.):样本空间中全体样本服从一个未知分布(distribution)D,得到的每一个样本都是独立地从这个分布上采样得到

1.2 假设空间


能够将学习的过程当作在全部假设(hypothesis)组成的空间中进行搜索的过程,搜索目标是找到与训练集“匹配”(fit)的假设。假设的表示一旦肯定,假设空间的大小就肯定了。

假设空间的搜索策略:自顶向下、从通常到特殊、自底向上、从特殊到通常,etc.

现实问题中,可能有多个假设与训练集一致,即存在一个与训练集一致的“假设空间”,称之为“版本空间”(version space)。

1.3 概括偏好


概括偏好(inductive bias):机器学习算法在学习过程当中对某种类型假设的偏好。

任何一个有效的机器学习算法必有其概括偏好,不然它将被假设空间中看似在训练集上“等效”的假设所迷惑,而没法产生肯定的学习结果。算法的概括偏好是否与问题自己匹配,大多数时候直接决定了算法是否取得好的性能。

不存在引导算法确立正确“偏好”的通常性的原则。事实上,对于一个学习算法ζa,若它在某些问题上比学习算法ζb好,则必然存在另外一些问题,使得在那里ζb比ζa好。此结论能够由以下讨论得出:

假设样本空间X和假设空间H都是离散的。令P(h|X, ζa)表明算法ζa基于训练数据X产生假设h的几率,再令f表明咱们但愿学习的真实目标函数。ζa的“训练集外偏差”,即ζa在训练集外的全部样本上的偏差为

其中是指示函数,若•为真则取1,不然取值0。

考虑二分问题,且真实目标函数能够是任何函数X→{0,1},函数空间为{0,1}|X|。对全部可能的f,按均匀偏差求和,有

上式代表,总偏差与学习算法无关。对于任意两个学习算法ζa和ζb,都有

这就是NFL定理(No Free LunchTheorem, Wolpert and Macready, 1995)。固然,其前提是全部“问题”出现的概率相同,但实际情形并不是如此。不少时候,咱们只关注本身正在试图解决的问题。NFL的寓意,是让咱们意识到,脱离具体问题,空泛谈论“什么学习算法好”毫无心义。而针对具体问题,学习算法自身的概括偏好与问题是否匹配,每每会起决定性做用。

相关文章
相关标签/搜索