用python讲解数据结构之树的遍历

树的结构

树(tree)是一种抽象数据类型或是实现这种抽象数据类型的数据结构,用来模拟具备树状结构性质的数据集合
它具备如下的特色:
①每一个节点有零个或多个子节点;
②没有父节点的节点称为根节点;
③每个非根节点有且只有一个父节点;
④除了根节点外,每一个子节点能够分为多个不相交的子树;
node

树的分类

二叉树

二叉树:每一个节点最多含有两个子树的树称为二叉树。
python

二叉树中一些专业术语:算法

  • 父节点:A节点就是B节点的父节点,B节点是A节点的子节点
  • 兄弟节点:B、C这两个节点的父节点是同一个节点,因此他们互称为兄弟节点
  • 根节点:A节点没有父节点,咱们把没有父节点的节点叫作根节点
  • 叶子节点:图中的H、I、J、K、L节点没有子节点,咱们把没有子节点的节点叫作叶子节点
  • 节点的高度:节点到叶子结点的最长路径,好比C节点的高度是2(L->F是1,F->C是2)
  • 节点的深度:节点到根节点的所经历的边的个数好比C节点的高度是1(A->C,只有一条边,因此深度=1)
  • 节点的层:节点的高度
  • 树的高度:根节点的高度

基于二叉树衍生的多种树型结构:数据库

满二叉树

满二叉树:除最后一层无任何子节点外,每一层上的全部结点都有两个子结点。也能够这样理解,除叶子结点外的全部结点均有两个子结点。节点数达到最大值,全部叶子结点必须在同一层上
数据结构

彻底二叉树

彻底二叉树:设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第h 层全部的结点都连续集中在最左边,这就是彻底二叉树
app

满二叉树和彻底二叉树对比:
post

二叉查找树

二叉查找树: 也称二叉搜索树,或二叉排序树。其定义也比较简单,要么是一颗空树,要么就是具备以下性质的二叉树:
(1)若任意节点的左子树不空,则左子树上全部结点的值均小于它的根结点的值;
(2) 若任意节点的右子树不空,则右子树上全部结点的值均大于它的根结点的值;
(3) 任意节点的左、右子树也分别为二叉查找树;
(4) 没有键值相等的节点。性能

平衡二叉树

定义: 平衡二叉搜索树,又被称为AVL树,且具备如下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,而且左右两个子树都是一棵平衡二叉树设计

平衡二叉树出现缘由:
因为普通的二叉查找树会容易失去”平衡“,极端状况下,二叉查找树会退化成线性的链表,致使插入和查找的复杂度降低到 O(n) ,因此,这也是平衡二叉树设计的初衷。那么平衡二叉树如何保持”平衡“呢?根据定义,有两个重点,一是左右两子树的高度差的绝对值不能超过1,二是左右两子树也是一颗平衡二叉树。
指针

平衡二叉树的建立:
平衡二叉树是一棵高度平衡的二叉查找树。因此,要构建跟维系一棵平衡二叉树就比普通的二叉树要复杂的多。在构建一棵平衡二叉树的过程当中,当有新的节点要插入时,检查是否因插入后而破坏了树的平衡,若是是,则须要作旋转去改变树的结构

红黑树

avl树每次插入删除会进行大量的平衡度计算致使IO数量巨大而影响性能。因此出现了红黑树。一种二叉查找树,但在每一个节点增长一个存储位表示节点的颜色,能够是红或黑(非红即黑)

定义:

  1. 每一个节点非红即黑;
  2. 根节点是黑的;
  3. 每一个叶节点(叶节点即树尾端NULL指针或NULL节点)都是黑的;
  4. 如图所示,若是一个节点是红的,那么它的两儿子都是黑的;
  5. 对于任意节点而言,其到叶子点树NULL指针的每条路径都包含相同数目的黑节点;
  6. 每条路径都包含相同的黑节点;

红黑树有两个重要性质
一、红节点的孩子节点不能是红节点;
二、从根到叶子节点的任意一条路径上的黑节点数目同样多。
这两条性质确保该树的高度为logN,因此是平衡树。

优点
红黑树的查询性能略微逊色于AVL树,由于他比avl树会稍微不平衡最多一层,也就是说红黑树的查询性能只比相同内容的avl树最多多一次比较,可是,红黑树在插入和删除上完爆avl树,avl树每次插入删除会进行大量的平衡度计算,而红黑树为了维持红黑性质所作的红黑变换和旋转的开销,相较于avl树为了维持平衡的开销要小得多

使用场景

  1. 普遍用于C ++的STL中,地图和集都是用红黑树实现的;
  2. 着名的Linux的的进程调度彻底公平调度程序,用红黑树管理进程控制块,进程的虚拟内存区域都存储在一颗红黑树上,每一个虚拟地址区域都对应红黑树的一个节点,左指针指向相邻的地址虚拟存储区域,右指针指向相邻的高地址虚拟地址空间;
  3. IO多路复用的epoll的的的实现采用红黑树组织管理的的的sockfd,以支持快速的增删改查;
  4. Nginx的的的中用红黑树管理定时器,由于红黑树是有序的,能够很快的获得距离当前最小的定时器;
  5. Java的的的中TreeMap中的中的实现;

B树

定义
B树是为实现高效的磁盘存取而设计的多叉平衡搜索树。(B树和B-tree这两个是同一种树)

产生缘由
B树是一种查找树,咱们知道,这一类树(好比二叉查找树,红黑树等等)最初生成的目的都是为了解决某种系统中,查找效率低的问题。
B树也是如此,它最初启发于二叉查找树,二叉查找树的特色是每一个非叶节点都只有两个孩子节点。然而这种作法会致使当数据量很是大时,二叉查找树的深度过深,搜索算法自根节点向下搜索时,须要访问的节点也就变的至关多。
若是这些节点存储在外存储器中,每访问一个节点,至关于就是进行了一次I/O操做,随着树高度的增长,频繁的I/O操做必定会下降查询的效率。

定义:
B树是一种平衡的多分树,一般咱们说m阶的B树,它必须知足以下条件:

  1. 每一个节点最多只有m个子节点。
  2. 每一个非叶子节点(除了根)具备至少⌈ m/2⌉子节点。
  3. 若是根不是叶节点,则根至少有两个子节点。
  4. 具备k个子节点的非叶节点包含k -1个键。
  5. 全部叶子都出如今同一水平,没有任何信息(高度一致)。

特色:

  1. 关键字集合分布在整棵树中;
  2. 多路,非二叉树
  3. 每一个节点既保存索引,又保存数据
  4. 搜索时至关于二分查找

B+树

B+树是应文件系统所需而产生的B树的变形树

B+树有两种类型的节点:内部结点(也称索引结点)和叶子结点。内部节点就是非叶子节点,内部节点不存储数据,只存储索引,数据都存储在叶子节点。

内部结点中的key都按照从小到大的顺序排列,对于内部结点中的一个key,左树中的全部key都小于它,右子树中的key都大于等于它。叶子结点中的记录也按照key的大小排列。

每一个叶子结点都存有相邻叶子结点的指针,叶子结点自己依关键字的大小自小而大顺序连接

父节点存有右孩子的第一个元素的索引。

最核心的特色以下:
(1)多路非二叉
(2)只有叶子节点保存数据
(3)搜索时至关于二分查找
(4)增长了相邻接点的指向指针

B+树为何时候作数据库索引:因为B+树的数据都存储在叶子结点中,分支结点均为索引,方便扫库,只须要扫一遍叶子结点便可,可是B树由于其分支结点一样存储着数据,咱们要找到具体的数据,须要进行一次中序遍历按序来扫。简单来讲就是:B+树查询某一个数据时扫描叶子节点便可;而B树须要中序遍历整个树,因此B+树更快。

为何说B+树比B树更适合数据库索引?

1)B+树的磁盘读写代价更低
  B+树的内部结点并无指向关键字具体信息的指针。所以其内部结点相对B 树更小。若是把全部同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的须要查找的关键字也就越多。相对来讲IO读写次数也就下降了;

2)B+树查询效率更加稳定
  因为非终结点并非最终指向文件内容的结点,而只是叶子结点中关键字的索引。因此任何关键字的查找必须走一条从根结点到叶子结点的路。全部关键字查询的路径长度相同,致使每个数据的查询效率至关;

3)B+树便于范围查询(最重要的缘由,范围查找是数据库的常态)
  B树在提升了IO性能的同时并无解决元素遍历效率低下的问题,正是为了解决这个问题,B+树应用而生。B+树只须要去遍历叶子节点就能够实现整棵树的遍历。并且在数据库中基于范围的查询是很是频繁的,而B树不支持这样的操做或者说效率过低;
B树的范围查找用的是中序遍历,而B+树用的是在链表上遍历;

树的建立

树的建立有不少种方式,分为迭代建立和递归建立。下面分别介绍这两种建立数的方式。

迭代建立

建立的树:

该建立方法是按照层次建立,第一层建立好以后第二层,第二层完成后建立第三层。

class Node(object):

    def __init__(self,value=-1,left=None,right=None):

        self.value = value
        self.left = left
        self.right = right
        
class Tree(object):

    def __init__(self, root=None):
        self.root = root

    def insert(self,element):
        node = Node(element)
        if self.root == None:
            self.root = node
        else:
            queue = []
            queue.append(self.root)

            while queue:
                cur = queue.pop(0)
                if cur.left == None:
                    cur.left = node
                    return
                elif cur.right == None:
                    cur.right = node
                    return
                else:
                    queue.append(cur.left)
                    queue.append(cur.right)
    
    def output(self, root):

        if root == None:
            return 

        print(root.value)
        self.output(root.left)
        self.output(root.right)

one = Tree()
for i in range(10):
    one.insert(i)

one.output(one.root)

递归建立

该建立方式是递归建立,前提是将树的数据组织成一个彻底二叉树的形式

class Node(object):

    def __init__(self,value=None):
        self.value = value
        self.left = None
        self.right = None


def create_two(index, length, arr):
    
    if index > length:
        return None

    node = Node(arr[index])
    node.left = create_two(index*2+1, length, arr)
    node.right = create_two(index*2+2, length, arr)

    return node

def BFS(root):

    queue = [root]
    while queue:
        cur = queue.pop(0)
        print(cur.value)
        
        if cur.left:
            queue.append(cur.left)

        if cur.right:
            queue.append(cur.right)

arr = [1,2,3,4,None,None,None,None,None]
length = len(arr) -1 
head = create_two(0,length, arr)

print(head.value)
print(head.left)
print(head.right)

BFS(head)

树的遍历

树的遍历方式有不少种,能够分为五类:

  1. 前序遍历
  2. 中序遍历
  3. 后序遍历
  4. 层次遍历
  5. 子树遍历

实现遍历的方式中有能够分为递归和迭代

class TreeNode(object):

    def __init__(self,value=None):
        self.value = value
        self.left = None
        self.right = None

class Tree(object):

    def __init__(self):
        self.root = TreeNode(None)
        self.arr = []

    def create(self,value):
        
        if self.root.value is None:
            self.root = TreeNode(value)
        else:
            queue = [self.root]
            while queue:
                node = queue.pop(0)

                if node.left:
                    queue.append(node.left)
                else:
                    node.left = TreeNode(value)
                    return 
                if node.right:
                    queue.append(node.right)
                else:
                    node.right = TreeNode(value)
                    return 
    # 递归、前序遍历
    def preorder(self,root):
        if root is None:
            return 
        self.arr.append(root.value)
        self.preorder(root.left)
        self.preorder(root.right)

        
    # 递归、中序遍历
    def inorder(self,root):
        if root is None:
            return 
        self.inorder(root.left)
        self.arr.append(root.value)
        self.inorder(root.right)

    # 递归、后序遍历
    def postorder(self,root):
        if root is None:
            return 

        self.postorder(root.left)
        self.postorder(root.right)
        self.arr.append(root.value)
    
    # 迭代、前序遍历
    def preorder_two(self,root):

        stack = [root]
        arr = []
        while stack:
            cur = stack.pop()

            arr.append(cur.value)
            if cur.right:
                stack.append(cur.right)
            if cur.left:
                stack.append(cur.left)
        print(arr)    
    # 迭代、后序遍历
    def postorder_two(self,root):
        stack = [root]
        arr = []
        while stack:
            cur = stack.pop()
            
            arr.append(cur.value)
            if cur.left:
                stack.append(cur.left)

            if cur.right:
                stack.append(cur.right)
        
        print(arr[::-1])
    
    # 迭代、中序遍历
    def inorder_two(self,root):

        cur = root
        stack = []
        arr = []
        while cur or stack:
            while cur:
                stack.append(cur)
                cur = cur.left
            node = stack.pop()
            arr.append(node.value)
            cur = node.right

        print(arr)
    
    # 层次遍历
    def levelorder(self,root):

        queue = [root]
        arr = []
        while queue:
            cur = queue.pop(0)
            arr.append(cur.value)
            if cur.left:
                queue.append(cur.left)

            if cur.right:
                queue.append(cur.right)
        print(arr)
    
    # 子数遍历,返回从根节点到每个叶子节点的一条路径
    # 子数遍历,返回从根节点到每个叶子节点的一条路径
    def zishu(self,root,arr):
       
        if not root.left and not root.right:
            print(arr)
            return 

        if root.left:
            self.zishu(root.left, arr + [root.left.value])
           
        if root.right:
            self.zishu(root.right, arr + [root.right.value])

tree = Tree()
for i in range(10):
    tree.create(i)
print('--------------------递归--------------------------')
tree.preorder(tree.root)
print(tree.arr)

tree.arr = []
tree.inorder(tree.root)
print(tree.arr)

tree.arr = []
tree.postorder(tree.root)
print(tree.arr)

print('--------------------迭代--------------------------')
tree.preorder_two(tree.root)
tree.inorder_two(tree.root)
tree.postorder_two(tree.root)

print('--------------------层次--------------------------')
tree.levelorder(tree.root)

print('--------------------子数--------------------------')
tree.arr = []
tree.zishu(tree.root, [tree.root.value])
print(tree.arr)

相关文章
相关标签/搜索