[解读] The relativistic discriminator: a key element missing from standard GAN

在标准的 GAN 中, 鉴别器用来估计输入样本为真实样本的概率, 生成器用来生成逼真的样本, 来提高被鉴别器鉴别为真实样本的概率. 然而本文提出生成器应该同时降低真实样本的真实性的概率. 首先因为这符合一个先验知识, 即在一个批次中有一半数据是真实的, 并且可以用散度最小化来验证这个设想, 在最佳设置中, 标准的 GAN 等效于积分概率度量 (IPM) 的 GAN. 作者表明相对鉴别器 (rela
相关文章
相关标签/搜索