文章已经收录在 Github.com/niumoo/JavaNotes ,更有 Java 程序员所须要掌握的核心知识,欢迎Star和指教。
欢迎关注个人 公众号,文章每周更新。
上一篇文章介绍了 HashMap 源码,反响不错,也有不少同窗发表了本身的观点,此次又来了,此次是 ConcurrentHashMap
了,做为线程安全的HashMap ,它的使用频率也是很高。那么它的存储结构和实现原理是怎么样的呢?java
Java 7 中 ConcurrentHashMap 的存储结构如上图,ConcurrnetHashMap 由不少个 Segment 组合,而每个 Segment 是一个相似于 HashMap 的结构,因此每个 HashMap 的内部能够进行扩容。可是 Segment 的个数一旦初始化就不能改变,默认 Segment 的个数是 16 个,你也能够认为 ConcurrentHashMap 默认支持最多 16 个线程并发。node
经过 ConcurrentHashMap 的无参构造探寻 ConcurrentHashMap 的初始化流程。git
/** * Creates a new, empty map with a default initial capacity (16), * load factor (0.75) and concurrencyLevel (16). */ public ConcurrentHashMap() { this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); }
无参构造中调用了有参构造,传入了三个参数的默认值,他们的值是。程序员
/** * 默认初始化容量 */ static final int DEFAULT_INITIAL_CAPACITY = 16; /** * 默认负载因子 */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * 默认并发级别 */ static final int DEFAULT_CONCURRENCY_LEVEL = 16;
接着看下这个有参构造函数的内部实现逻辑。github
@SuppressWarnings("unchecked") public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) { // 参数校验 if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); // 校验并发级别大小,大于 1<<16,重置为 65536 if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS; // Find power-of-two sizes best matching arguments // 2的多少次方 int sshift = 0; int ssize = 1; // 这个循环能够找到 concurrencyLevel 之上最近的 2的次方值 while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } // 记录段偏移量 this.segmentShift = 32 - sshift; // 记录段掩码 this.segmentMask = ssize - 1; // 设置容量 if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; // c = 容量 / ssize ,默认 16 / 16 = 1,这里是计算每一个 Segment 中的相似于 HashMap 的容量 int c = initialCapacity / ssize; if (c * ssize < initialCapacity) ++c; int cap = MIN_SEGMENT_TABLE_CAPACITY; //Segment 中的相似于 HashMap 的容量至少是2或者2的倍数 while (cap < c) cap <<= 1; // create segments and segments[0] // 建立 Segment 数组,设置 segments[0] Segment<K,V> s0 = new Segment<K,V>(loadFactor, (int)(cap * loadFactor), (HashEntry<K,V>[])new HashEntry[cap]); Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize]; UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0] this.segments = ss; }
总结一下在 Java 7 中 ConcurrnetHashMap 的初始化逻辑。面试
接着上面的初始化参数继续查看 put 方法源码。数组
/** * Maps the specified key to the specified value in this table. * Neither the key nor the value can be null. * * <p> The value can be retrieved by calling the <tt>get</tt> method * with a key that is equal to the original key. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt> * @throws NullPointerException if the specified key or value is null */ public V put(K key, V value) { Segment<K,V> s; if (value == null) throw new NullPointerException(); int hash = hash(key); // hash 值无符号右移 28位(初始化时得到),而后与 segmentMask=15 作与运算 // 其实也就是把高4位与segmentMask(1111)作与运算 int j = (hash >>> segmentShift) & segmentMask; if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment // 若是查找到的 Segment 为空,初始化 s = ensureSegment(j); return s.put(key, hash, value, false); } /** * Returns the segment for the given index, creating it and * recording in segment table (via CAS) if not already present. * * @param k the index * @return the segment */ @SuppressWarnings("unchecked") private Segment<K,V> ensureSegment(int k) { final Segment<K,V>[] ss = this.segments; long u = (k << SSHIFT) + SBASE; // raw offset Segment<K,V> seg; // 判断 u 位置的 Segment 是否为null if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { Segment<K,V> proto = ss[0]; // use segment 0 as prototype // 获取0号 segment 里的 HashEntry<K,V> 初始化长度 int cap = proto.table.length; // 获取0号 segment 里的 hash 表里的扩容负载因子,全部的 segment 的 loadFactor 是相同的 float lf = proto.loadFactor; // 计算扩容阀值 int threshold = (int)(cap * lf); // 建立一个 cap 容量的 HashEntry 数组 HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap]; if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { // recheck // 再次检查 u 位置的 Segment 是否为null,由于这时可能有其余线程进行了操做 Segment<K,V> s = new Segment<K,V>(lf, threshold, tab); // 自旋检查 u 位置的 Segment 是否为null while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { // 使用CAS 赋值,只会成功一次 if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s)) break; } } } return seg; }
上面的源码分析了 ConcurrentHashMap 在 put 一个数据时的处理流程,下面梳理下具体流程。安全
若是指定位置的 Segment 为空,则初始化这个 Segment.并发
初始化 Segment 流程:app
上面探究了获取 Segment 段和初始化 Segment 段的操做。最后一行的 Segment 的 put 方法尚未查看,继续分析。
final V put(K key, int hash, V value, boolean onlyIfAbsent) { // 获取 ReentrantLock 独占锁,获取不到,scanAndLockForPut 获取。 HashEntry<K,V> node = tryLock() ? null : scanAndLockForPut(key, hash, value); V oldValue; try { HashEntry<K,V>[] tab = table; // 计算要put的数据位置 int index = (tab.length - 1) & hash; // CAS 获取 index 坐标的值 HashEntry<K,V> first = entryAt(tab, index); for (HashEntry<K,V> e = first;;) { if (e != null) { // 检查是否 key 已经存在,若是存在,则遍历链表寻找位置,找到后替换 value K k; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { oldValue = e.value; if (!onlyIfAbsent) { e.value = value; ++modCount; } break; } e = e.next; } else { // first 有值没说明 index 位置已经有值了,有冲突,链表头插法。 if (node != null) node.setNext(first); else node = new HashEntry<K,V>(hash, key, value, first); int c = count + 1; // 容量大于扩容阀值,小于最大容量,进行扩容 if (c > threshold && tab.length < MAXIMUM_CAPACITY) rehash(node); else // index 位置赋值 node,node 多是一个元素,也多是一个链表的表头 setEntryAt(tab, index, node); ++modCount; count = c; oldValue = null; break; } } } finally { unlock(); } return oldValue; }
因为 Segment 继承了 ReentrantLock,因此 Segment 内部能够很方便的获取锁,put 流程就用到了这个功能。
scanAndLockForPut
方法继续获取。遍历 put 新元素,为何要遍历?由于这里获取的 HashEntry 多是一个空元素,也多是链表已存在,因此要区别对待。
若是这个位置上的 HashEntry 不存在:
若是这个位置上的 HashEntry 存在:
不一致,获取链表下一个节点,直到发现相同进行值替换,或者链表表里完毕没有相同的。
这里面的第一步中的 scanAndLockForPut 操做这里没有介绍,这个方法作的操做就是不断的自旋 tryLock()
获取锁。当自旋次数大于指定次数时,使用 lock()
阻塞获取锁。在自旋时顺表获取下 hash 位置的 HashEntry。
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) { HashEntry<K,V> first = entryForHash(this, hash); HashEntry<K,V> e = first; HashEntry<K,V> node = null; int retries = -1; // negative while locating node // 自旋获取锁 while (!tryLock()) { HashEntry<K,V> f; // to recheck first below if (retries < 0) { if (e == null) { if (node == null) // speculatively create node node = new HashEntry<K,V>(hash, key, value, null); retries = 0; } else if (key.equals(e.key)) retries = 0; else e = e.next; } else if (++retries > MAX_SCAN_RETRIES) { // 自旋达到指定次数后,阻塞等到只到获取到锁 lock(); break; } else if ((retries & 1) == 0 && (f = entryForHash(this, hash)) != first) { e = first = f; // re-traverse if entry changed retries = -1; } } return node; }
ConcurrentHashMap 的扩容只会扩容到原来的两倍。老数组里的数据移动到新的数组时,位置要么不变,要么变为 index+ oldSize,参数里的 node 会在扩容以后使用链表头插法插入到指定位置。
private void rehash(HashEntry<K,V> node) { HashEntry<K,V>[] oldTable = table; // 老容量 int oldCapacity = oldTable.length; // 新容量,扩大两倍 int newCapacity = oldCapacity << 1; // 新的扩容阀值 threshold = (int)(newCapacity * loadFactor); // 建立新的数组 HashEntry<K,V>[] newTable = (HashEntry<K,V>[]) new HashEntry[newCapacity]; // 新的掩码,默认2扩容后是4,-1是3,二进制就是11。 int sizeMask = newCapacity - 1; for (int i = 0; i < oldCapacity ; i++) { // 遍历老数组 HashEntry<K,V> e = oldTable[i]; if (e != null) { HashEntry<K,V> next = e.next; // 计算新的位置,新的位置只多是不便或者是老的位置+老的容量。 int idx = e.hash & sizeMask; if (next == null) // Single node on list // 若是当前位置还不是链表,只是一个元素,直接赋值 newTable[idx] = e; else { // Reuse consecutive sequence at same slot // 若是是链表了 HashEntry<K,V> lastRun = e; int lastIdx = idx; // 新的位置只多是不便或者是老的位置+老的容量。 // 遍历结束后,lastRun 后面的元素位置都是相同的 for (HashEntry<K,V> last = next; last != null; last = last.next) { int k = last.hash & sizeMask; if (k != lastIdx) { lastIdx = k; lastRun = last; } } // ,lastRun 后面的元素位置都是相同的,直接做为链表赋值到新位置。 newTable[lastIdx] = lastRun; // Clone remaining nodes for (HashEntry<K,V> p = e; p != lastRun; p = p.next) { // 遍历剩余元素,头插法到指定 k 位置。 V v = p.value; int h = p.hash; int k = h & sizeMask; HashEntry<K,V> n = newTable[k]; newTable[k] = new HashEntry<K,V>(h, p.key, v, n); } } } } // 头插法插入新的节点 int nodeIndex = node.hash & sizeMask; // add the new node node.setNext(newTable[nodeIndex]); newTable[nodeIndex] = node; table = newTable; }
有些同窗可能会对最后的两个 for 循环有疑惑,这里第一个 for 是为了寻找这样一个节点,这个节点后面的全部 next 节点的新位置都是相同的。而后把这个做为一个链表赋值到新位置。第二个 for 循环是为了把剩余的元素经过头插法插入到指定位置链表。这样实现的缘由多是基于几率统计,有深刻研究的同窗能够发表下意见。
到这里就很简单了,get 方法只须要两步便可。
public V get(Object key) { Segment<K,V> s; // manually integrate access methods to reduce overhead HashEntry<K,V>[] tab; int h = hash(key); long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; // 计算获得 key 的存放位置 if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null && (tab = s.table) != null) { for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); e != null; e = e.next) { // 若是是链表,遍历查找到相同 key 的 value。 K k; if ((k = e.key) == key || (e.hash == h && key.equals(k))) return e.value; } } return null; }
能够发现 Java8 的 ConcurrentHashMap 相对于 Java7 来讲变化比较大,再也不是以前的 Segment 数组 + HashEntry 数组 + 链表,而是 Node 数组 + 链表 / 红黑树。当冲突链表达到必定长度时,链表会转换成红黑树。
/** * Initializes table, using the size recorded in sizeCtl. */ private final Node<K,V>[] initTable() { Node<K,V>[] tab; int sc; while ((tab = table) == null || tab.length == 0) { // 若是 sizeCtl < 0 ,说明另外的线程执行CAS 成功,正在进行初始化。 if ((sc = sizeCtl) < 0) // 让出 CPU 使用权 Thread.yield(); // lost initialization race; just spin else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if ((tab = table) == null || tab.length == 0) { int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked") Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; table = tab = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } break; } } return tab; }
从源码中能够发现 ConcurrentHashMap 的初始化是经过自旋和 CAS 操做完成的。里面须要注意的是变量 sizeCtl
,它的值决定着当前的初始化状态。
直接过一遍 put 源码。
public V put(K key, V value) { return putVal(key, value, false); } /** Implementation for put and putIfAbsent */ final V putVal(K key, V value, boolean onlyIfAbsent) { // key 和 value 不能为空 if (key == null || value == null) throw new NullPointerException(); int hash = spread(key.hashCode()); int binCount = 0; for (Node<K,V>[] tab = table;;) { // f = 目标位置元素 Node<K,V> f; int n, i, fh;// fh 后面存放目标位置的元素 hash 值 if (tab == null || (n = tab.length) == 0) // 数组桶为空,初始化数组桶(自旋+CAS) tab = initTable(); else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { // 桶内为空,CAS 放入,不加锁,成功了就直接 break 跳出 if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null))) break; // no lock when adding to empty bin } else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else { V oldVal = null; // 使用 synchronized 加锁加入节点 synchronized (f) { if (tabAt(tab, i) == f) { // 说明是链表 if (fh >= 0) { binCount = 1; // 循环加入新的或者覆盖节点 for (Node<K,V> e = f;; ++binCount) { K ek; if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { oldVal = e.val; if (!onlyIfAbsent) e.val = value; break; } Node<K,V> pred = e; if ((e = e.next) == null) { pred.next = new Node<K,V>(hash, key, value, null); break; } } } else if (f instanceof TreeBin) { // 红黑树 Node<K,V> p; binCount = 2; if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) p.val = value; } } } } if (binCount != 0) { if (binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); if (oldVal != null) return oldVal; break; } } } addCount(1L, binCount); return null; }
hashcode == MOVED == -1
,则须要进行扩容。TREEIFY_THRESHOLD
则要转换为红黑树。get 流程比较简单,直接过一遍源码。
public V get(Object key) { Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek; // key 所在的 hash 位置 int h = spread(key.hashCode()); if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) { // 若是指定位置元素存在,头结点hash值相同 if ((eh = e.hash) == h) { if ((ek = e.key) == key || (ek != null && key.equals(ek))) // key hash 值相等,key值相同,直接返回元素 value return e.val; } else if (eh < 0) // 头结点hash值小于0,说明正在扩容或者是红黑树,find查找 return (p = e.find(h, key)) != null ? p.val : null; while ((e = e.next) != null) { // 是链表,遍历查找 if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))) return e.val; } } return null; }
总结一下 get 过程:
总结:
总的来讲 ConcruuentHashMap 在 Java8 中相对于 Java7 来讲变化仍是挺大的,
Java7 中 ConcruuentHashMap 使用的分段锁,也就是每个 Segment 上同时只有一个线程能够操做,每个 Segment 都是一个相似 HashMap 数组的结构,它能够扩容,它的冲突会转化为链表。可是 Segment 的个数一但初始化就不能改变。
Java8 中的 ConcruuentHashMap 使用的 Synchronized 锁加 CAS 的机制。结构也由 Java7 中的 Segment 数组 + HashEntry 数组 + 链表 进化成了 Node 数组 + 链表 / 红黑树,Node 是相似于一个 HashEntry 的结构。它的冲突再达到必定大小时会转化成红黑树,在冲突小于必定数量时又退回链表。
有些同窗可能对 Synchronized 的性能存在疑问,其实 Synchronized 锁自从引入锁升级策略后,性能再也不是问题,有兴趣的同窗能够本身了解下 Synchronized 的锁升级。
最后的话
文章已经收录在 Github.com/niumoo/JavaNotes ,欢迎Star和指教。更有一线大厂面试点,Java程序员须要掌握的核心知识等文章,也整理了不少个人文字,欢迎 Star 和完善,但愿咱们一块儿变得优秀。
文章有帮助能够点个「赞」或「分享」,都是支持,我都喜欢! 文章每周持续更新,要实时关注我更新的文章以及分享的干货,能够关注「 未读代码 」公众号